当前位置: 首页 > news >正文

电商网站商品中心设计方案新产品推广方案范文

电商网站商品中心设计方案,新产品推广方案范文,wix网站怎么做,有关建设网站的论文目录 Elasticsearch查询分类 叶子查询 全文检索查询 match查询 multi_match查询 精确查询 term查询 range查询 复杂查询 bool查询简单应用 bool查询实现排序和分页 bool查询实现高亮 场景分析 问题思考 解决方案 search_after方案(推荐) point in time方案 方案…

目录

Elasticsearch查询分类

叶子查询

全文检索查询

match查询

multi_match查询

精确查询

term查询

range查询

复杂查询

bool查询简单应用

bool查询实现排序和分页

bool查询实现高亮

场景分析

问题思考

解决方案

 search_after方案(推荐)

point in time方案

方案比较


Elasticsearch查询分类

Elasticsearch的查询可以分为两大类:

叶子查询(Leaf query clauses):一般是在特定的字段里查询特定值,属于简单查询,很少单独使用。

复合查询(Compound query clauses):以逻辑方式组合多个叶子查询或者更改叶子查询的行为方式。

叶子查询

全文检索查询

用分词器对用户输入搜索条件先分词,得到词条,然后再利用倒排索引搜索词条。

match查询

可以以一个分词,例如"GB"得到所有name中带“GB”的数据

# match查询所有
GET /items/_search
{"query": {"match": {"name": "GB"}}
}

实现效果如下:(总共有17条数据中name有“GB”)

multi_match查询

match类似的还有multi_match,区别在于可以同时对多个字段搜索,而且多个字段都要满足,语法示例:

GET /items/_search
{"query": {"multi_match": {"query": "电脑","fields": ["name", "category"]}}
}

实现效果如下:(即name和brand都必须带“电脑”)

精确查询

不对用户输入搜索条件分词,根据字段内容精确值匹配。但只能查找keyword、数值、日期、boolean类型的字段。

term查询

# term查询所有
GET /items/_search
{"query": {"term": {"brand": {"value": "Dell"}}}
}

实现效果如下:(不在对搜索条件分词)

range查询


# range查询所有
GET /items/_search
{"query": {"range": {"price": {"gte": 10000,"lte": 200000}}}
}

实现效果如下:(对price范围查询: 10000<查询值<200000)

复杂查询

bool查询简单应用

GET /items/_search
{"query": {"bool": {"must": [{"match": {"name": "GB"}}],"filter": [{"term": {"brand": "Apple"}},{"range": {"price": {"gte": 100000,"lte": 2000000}}}]}}
}

实现效果如下:(name中要有“GB”,brand中有“Apple”,且100000<查询值<2000000)

bool查询实现排序和分页


GET /items/_search
{"query": {"match_all": {}},"sort": [{"price": {"order": "desc"},"sold": {"order": "asc"}}],"from": 0,"size": 5
}

实现效果解读:查询所有数据,先以price降序排序,price相同,以sold升序排序,一页五条。

bool查询实现高亮

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示。

事实上elasticsearch已经提供了给搜索关键字加标签的语法,无需我们自己编码。

GET /items/_search
{"query": {"match": {"name": "手机"}},"highlight": {"fields": {"name": {}}}
}

实现效果如下:(给手机加上了<em>标签)

场景分析

问题思考

  1. elasticsearch的数据一般会采用分片存储,也就是把一个索引中的数据分成N份,存储到不同节点上。这种存储方式比较有利于数据扩展,但给分页带来了一些麻烦。
  2. 比如一个索引库中有100000条数据,分别存储到4个分片,每个分片25000条数据。现在每页查询10条,查询第99页。
  3. 实现思路来分析,肯定是将所有数据排序,找出前1000名,截取其中的990~1000的部分。但问题来了,我们如何才能找到所有数据中的前1000名呢?
  4. 要知道每一片的数据都不一样,第1片上的第900~1000,在另1个节点上并不一定依然是900~1000名。所以我们只能在每一个分片上都找出排名前1000的数据,然后汇总到一起,重新排序,才能找出整个索引库中真正的前1000名。

解决方案

 search_after方案(推荐)

search_after提供了一种基于上一次查询结果中最后一个文档的排序值来“继续”下一页的方式。这要求每次查询都必须带上前一次查询结果中的排序值,从而避免了深度分页的问题。

GET /_search
{"size": 10,"query": {"match": {"title": "elasticsearch"}},"search_after": [123456], // 上一个查询结果中的排序值"sort": [{"_id": "desc"}]
}

point in time方案

从Elasticsearch 7.10版本开始引入的point in time功能,提供了比scroll(一个过时的方案,官方弃用)更灵活的方式来遍历结果集。与scroll不同,point in time不会自动关闭搜索上下文,而是需要显式地关闭它,这样可以在一定程度上减少资源消耗。

POST /my-index/_pit?keep_alive=1m
{}GET /_search
{"size": 10,"query": {"match": {"title": "elasticsearch"}},"pit": {"id": "wmx3UmRBY1VnVUJqQlNvMzZQRVhBQT09LS1RY1hZRkRBPT0=","keep_alive": "1m"},"sort": [{"_id": "asc"}]
}

方案比较

search_after 是解决前端深度分页的最佳选择,因为它效率高且易于实现。(简单)

point in time 提供了更细粒度的控制,特别适合长时间运行的数据处理任务,并有助于优化资源管理。

http://www.yidumall.com/news/13018.html

相关文章:

  • jsp页面如何做网站pv统计建网站seo
  • 网站建设视频教程拉人头最暴利的app
  • 哪个网站做公司业务广告效果好百度秒收录软件
  • 深圳罗湖住房和建设局网站百度下载安装2022最新版
  • 区域城市分站网站怎么做广州信息流推广公司
  • wordpress 重新生成缩略图seo的内容主要有哪些方面
  • 沈阳自助建站模板安康seo
  • 做服装批发必逛的网站网站建设方案书范文
  • 学校建网站三只松鼠网络营销案例分析
  • 苏州企业网站制作开发公司网站建站要多少钱
  • 天津专业做网站百度提交入口网址是指在哪里
  • 帮别人做彩票网站西安百度推广代运营
  • 排名前十的网站网络公司推广方案
  • 品牌英语短视频搜索seo
  • 网站建设网课网站友链查询源码
  • 东莞网络推广公司电话武汉seo工厂
  • 上海网站建设 建站猫北京seo的排名优化
  • 哪些公司做网站比较好北京百度推广官网首页
  • 网站建设后需要交费吗seo关键词查询工具
  • a片做视频网站免费的网站推广平台
  • 在线qq登录无需下载专业seo排名优化费用
  • 网站做戒酒通知书微信上如何投放广告
  • 网站建设需要找工信部吗seo博客
  • 网站改版域名不变最近几天的新闻
  • 贵阳做网站seo百度推广app下载
  • 小网站建设网络营销推广方案整合
  • 18网站推广b2b网站平台
  • 进一步加大网站集约化建设力度百度网页游戏大厅
  • 郑州百度seo网站优免费网站大全下载
  • 寄生虫网站排名代做百度招聘2022年最新招聘