当前位置: 首页 > news >正文

什么网站可以做项目seo代码优化步骤

什么网站可以做项目,seo代码优化步骤,这样建立自己的网站,it网站设计培训1 介绍 PEFT (Parameter-Efficient Fine Tuning) 方法在微调时冻结预训练模型参数,并在其上添加少量可训练的参数(称为适配器)这些适配器被训练用来学习特定任务的信息。这种方法已被证明在内存效率和计算使用上非常高效,同时能产…

1 介绍

  • PEFT (Parameter-Efficient Fine Tuning) 方法在微调时冻结预训练模型参数,并在其上添加少量可训练的参数(称为适配器)
  • 这些适配器被训练用来学习特定任务的信息。
  • 这种方法已被证明在内存效率和计算使用上非常高效,同时能产生与完全微调模型相当的结果
  • 使用PEFT训练的适配器通常比完整模型小一个数量级,这使得分享、存储和加载它们变得非常方便。
    • 例如,一个OPTForCausalLM模型的适配器权重在Hub上的存储只有约6MB
    • 相比之下,完整的模型权重可以达到约700MB。

2 加载 PEFT适配器

2.1 直接from_pretrained加载

  • 若要从 Transformers 加载和使用 PEFT 适配器模型,请确保 Hub 存储库或本地目录包含 adapter_config.json 文件和适配器权重
  • 然后,可以使用 AutoModel类加载 PEFT 适配器模型
from transformers import AutoModelForCausalLM, AutoTokenizerpeft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id)

2.2 load_adapter加载

from transformers import AutoModelForCausalLMmodel_id = "facebook/opt-350m"
peft_model_id = "ybelkada/opt-350m-lora"model = AutoModelForCausalLM.from_pretrained(model_id)
model.load_adapter(peft_model_id)

 2.3 以8位/4位加载

  • bitsandbytes 集成支持 8 位和 4 位精度数据类型,这对于加载大型模型非常有用,因为它节省了内存
  • 在 from_pretrained() 中添加 load_in_8bit 或 load_in_4bit 参数,并设置 device_map="auto" 以有效地将模型分配到你的硬件
from transformers import AutoModelForCausalLM, AutoTokenizerpeft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id, device_map="auto", load_in_8bit=True)

3 添加适配器 

from transformers import AutoModelForCausalLM
from peft import LoraConfigmodel_id = "facebook/opt-350m"
model = AutoModelForCausalLM.from_pretrained(model_id)
#加载这个模型lora_config = LoraConfig(target_modules=["q_proj", "k_proj"],init_lora_weights=False
)
'''
target_modules 参数指定了将 LoRA 适配器应用于模型的哪些部分这里是 "q_proj"(查询投影)和 "k_proj"(键投影)init_lora_weights 设置为 False,意味着在初始化时不加载 LoRA 权重
'''model.add_adapter(lora_config, adapter_name="adapter_1")
#使用 add_adapter 方法将之前配置的 LoRA 适配器添加到模型中,适配器命名为 "adapter_1"model.add_adapter(lora_config, adapter_name="adapter_2")
# 附加具有相同配置的新适配器"adapter_2"

4 设置使用哪个适配器

# 使用 adapter_1
model.set_adapter("adapter_1")
output = model.generate(**inputs)
print(tokenizer.decode(output_disabled[0], skip_special_tokens=True))# 使用 adapter_2
model.set_adapter("adapter_2")
output_enabled = model.generate(**inputs)
print(tokenizer.decode(output_enabled[0], skip_special_tokens=True))

5 启用和禁用适配器

一旦向模型添加了适配器,可以启用或禁用适配器模块

from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfigmodel_id = "facebook/opt-350m"
adapter_model_id = "ybelkada/opt-350m-lora"tokenizer = AutoTokenizer.from_pretrained(model_id)
text = "Hello"
inputs = tokenizer(text, return_tensors="pt")
#加载分词器和初始化输入model = AutoModelForCausalLM.from_pretrained(model_id)
peft_config = PeftConfig.from_pretrained(adapter_model_id)
'''
加载了预训练的基础模型 facebook/opt-350m 和适配器的配置。PeftConfig.from_pretrained 方法用于加载预定义的适配器配置。
'''peft_config.init_lora_weights = False
model.add_adapter(peft_config)
'''
在添加适配器前,设置 init_lora_weights = False 指明在初始化时不使用预训练的 LoRA 权重,
而是使用随机权重。然后将适配器添加到模型中。
'''model.enable_adapters()
output1 = model.generate(**inputs)
#启用适配器,然后使用启用了适配器的模型生成文本model.disable_adapters()
output2 = model.generate(**inputs)
#禁用适配器后,再次生成文本以查看不使用适配器时模型的输出表现tokenizer.decode(output1[0])
'''
'</s>Hello------------------'
'''tokenizer.decode(output2[0])
'''
"</s>Hello, I'm a newbie to this sub. I'm looking for a good place to"
'''

6 训练PEFT适配器

6.1 举例:添加lora适配器

6.1.1 定义你的适配器配置

from peft import LoraConfigpeft_config = LoraConfig(lora_alpha=16,lora_dropout=0.1,r=64,bias="none",task_type="CAUSAL_LM",
)
  • lora_alpha=16:指定 LoRA 层的缩放因子。
  • lora_dropout=0.1:设置在 LoRA 层中使用的 dropout 比率,以避免过拟合。
  • r=64:设置每个 LoRA 层的秩,即低秩矩阵的维度。
  • bias="none":指定不在 LoRA 层中使用偏置项。
  • task_type="CAUSAL_LM":设定这个 LoRA 配置是为了因果语言模型任务。

6.1.2 将适配器添加到模型

model.add_adapter(peft_config)

6.1.3将模型传递给 Trainer以进行训练

from transformers import Trainer
trainer = Trainer(model=model, ...)
trainer.train()

http://www.yidumall.com/news/92068.html

相关文章:

  • 电商网站如何做seo做一个企业网站需要多少钱
  • 网页计划书seo企业优化顾问
  • 域名注册商查询谷歌优化
  • 赣州九一人才网最新招聘青岛seo排名收费
  • 百度右边的网站推荐怎么做的长沙seo网络推广
  • 品牌网站建设方案ppt南安seo
  • 国外的做的比较优秀的网站软文是什么东西
  • 介绍好的免费网站模板下载win10优化大师免费版
  • 电脑网站支付百度付费推广
  • 网站做app开发抖音seo源码搭建
  • 绿植租摆网站建设2019年 2022疫情爆发
  • 地推网站信息怎么做seo关键词优化软件合作
  • HTML5移动端手机网站开发江北seo综合优化外包
  • java网站开发软件专业搜索引擎seo服务商
  • 美女做恐怖手术视频网站数据分析网
  • 网站模块数据同步如何推销网站
  • 宁波做微信网站教育培训网站官网
  • 软件网站是怎么做的浏览器如何推广自己网站
  • java网站开发农场一媒体app软件下载老版本
  • wordpress 图片站主题关键词优化靠谱推荐
  • 网站的布局方式有哪些方面大一html网页制作作业简单
  • 网站公司 模板网站搜索排名优化软件
  • 织梦做企业网站教程服务器域名怎么注册
  • 什么网站可以做ppt广州外包网络推广公司
  • 做爰全程的网站开鲁seo服务
  • 西安政府做网站快手流量推广免费网站
  • 做JSP网站买什么书旅游网络营销的渠道有哪些
  • 门头沟做网站网上商城推广13种方法
  • 北京正邦网站建设搜索seo
  • 自己想做个网站怎么做的网站多少钱