当前位置: 首页 > news >正文

北京正邦网站建设搜索seo

北京正邦网站建设,搜索seo,芜湖室内设计公司排名,什么网站免费做游戏线性回归什么是线性回归?回归分析:线性回归:回归问题求解单因子线性回归简单实例评估模型表现可视化模型展示多因子线性回归什么是线性回归? 回归分析: 根据数据,确定两种或两种以上变量间相互依赖的定量…

线性回归

    • 什么是线性回归?
      • 回归分析:
      • 线性回归:
    • 回归问题求解
    • 单因子线性回归
      • 简单实例
      • 评估模型表现
      • 可视化模型展示
    • 多因子线性回归

什么是线性回归?

回归分析:

根据数据,确定两种或两种以上变量间相互依赖的定量关系
在这里插入图片描述

线性回归:

回归分析中,变量与因变量存在线性关系
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

回归问题求解

在这里插入图片描述
注解:为了找合适的a和b,问题被替换成了寻找预测值和实际值之间的距离最小化。

损失函数:
在这里插入图片描述
注解:为什么要除以2m,是为了我们后面方便求解,因为我们要进行求导。这里除以2m后对最后的ab求解没有影响。

梯度下降法:
在这里插入图片描述
在这里插入图片描述

单因子线性回归

简单实例

简单说就是为了求y=ax+b中的a和b

假设我们有一份数据如下:
在这里插入图片描述
我们先看一下这些数据的分布:

from matplotlib import pyplot as plt
# 输入数据
x = [1,2,3,4,5,6,7,8,9,10]
y = [7,9,11,13,15,17,19,21,23,25]# 生成一个画布,设置坐标轴的比例
plt.figure(figsize=(5,5))# 创建散点图
plt.scatter(x,y)# 显示图形
plt.show()

在这里插入图片描述

要对上述数据使用线性回归算法进行拟合,需要用到scikit-learn库。

scikit-learn是一个适用于python语言的、专门针对于机器学习应用的算法库。

使用sklearn.linear_model库中的线性回归算法进行拟合的示例代码:

from sklearn.linear_model import LinearRegression
import numpy as np# 输入数据
x = [1,2,3,4,5,6,7,8,9,10]
y = [7, 9, 11, 13, 15, 17, 19, 21, 23, 25]# 把x从一维转为二维
x = np.array(x)
x = x.reshape(-1,1)# 建立线性回归模型
model = LinearRegression()# 训练模型
model.fit(x, y)# 获得y=ax+b中的a和b
a=model.coef_
b=model.intercept_
print(a)
print(b)# 预测
x_new = [[11], [12], [13], [14], [15]]
y_pred = model.predict(x_new)# 输出预测结果
print(y_pred)

注解:
在这个例子中,输入数据 x 和输出数据 y 分别被定义为两个列表。
然后,需要把x从一维转为二维,让x 中的每个元素是一个列表,包含一个自变量的值。 这是为了满足 LinearRegression() 函数的输入要求。否则会报错。
我们首先使用 LinearRegression() 函数初始化一个线性回归模型对象 model。
然后,我们使用模型对象的 fit() 方法训练模型,输入参数为 x 和 y。
然后,model.coef_获取系数,model.intercept_获取截距
最后,我们使用模型对象的 predict() 方法预测 x_new 中对应的因变量值 y_pred。
最后,我们输出预测结果。

评估模型表现

在上述代码的基础上添加如下代码:

from sklearn.metrics import mean_squared_error, r2_score# 计算预测值与真实值之间的MSE
mse = mean_squared_error(y, model.predict(x))# 计算决定系数R2
r2 = r2_score(y, model.predict(x))# 输出MSE和R2
print("MSE:", mse)
print("R2:", r2)

注解:
我们使用 mean_squared_error 函数计算预测值与真实值之间的均方误差(MSE)。
我们使用 r2_score 函数计算模型的决定系数(R2)。
最后,我们输出计算得到的MSE和R2。

MSE越小越好,R2分数越接近1越好

可视化模型展示

在上述代码的基础上添加如下代码:

import matplotlib.pyplot as plt# 绘制数据散点图
plt.scatter(x, y, color='black')# 绘制拟合直线
plt.plot(x, model.predict(x), color='blue', linewidth=3)# 添加图例
plt.legend(['Linear Regression Model', 'Data'])# 添加坐标轴标签
plt.xlabel('X')
plt.ylabel('Y')# 添加标题
plt.title('Linear Regression Model')# 显示图形
plt.show()

注解:
我们使用 scatter 函数绘制数据散点图,其中 x 和 y 分别是自变量和因变量。
我们使用 plot 函数绘制线性回归模型的拟合直线,其中 x 和 model.predict(x) 分别表示自变量和对应的因变量预测值。
我们使用 legend 函数添加图例,其中 [‘Linear Regression Model’, ‘Data’] 分别表示拟合直线和数据散点图的标签。
我们使用 xlabel 和 ylabel 函数添加坐标轴标签。
我们使用 title 函数添加标题。
最后,我们使用 show 函数显示图形。
在这里插入图片描述

多因子线性回归

http://www.yidumall.com/news/92035.html

相关文章:

  • 自己想做个网站怎么做的网站多少钱
  • 专业做网站的公司有优化师
  • 最新网站开发语言手机优化软件哪个好
  • 网站公司 转型上海外贸seo
  • 品牌网站建设价格外国搜索引擎登录入口
  • 用相片制作视频的软件seo整站优化多少钱
  • 福清做网站建站工具
  • 站群软件哪个好新的营销方式有哪些
  • 昆明网站优化网站制作厂家有哪些
  • 美工做图哪个网站好seo短视频
  • 网站空间自己做网络销售真恶心
  • 电商网站操作手册杭州优化公司多少钱
  • 网站建设bd方案手机管家一键优化
  • 网站建设色系搭配搜索热度查询
  • 营销型网站建设实训总结seo网站排名厂商定制
  • 安平百度做网站seo站内优化最主要的是什么
  • 滨州疫情最新消息今天优化seo网站
  • 电商网页设计网站seo免费入门教程
  • 定制网站建设推广方案深圳seo推广培训
  • 顺德o2o网站建设推广app平台有哪些
  • 上海做网站要多少钱企业网站分析报告
  • 用dw做淘宝网站营销策划公司排行榜
  • 免费设立网站最新新闻热点素材
  • 做网站如何写需求seo优化排名服务
  • wordpress加载本地媒体seo品牌优化整站优化
  • 个人网站备案名称上海seo顾问
  • 建立网站原理网络营销培训机构
  • 淘宝做促销的网站网站关键词快速优化
  • 外贸公司网站模板免费360优化大师最新版
  • 河北省建设工程教育网站前端开发