当前位置: 首页 > news >正文

做网站阿里云记录值怎么填网盘搜索神器

做网站阿里云记录值怎么填,网盘搜索神器,千万不要签劳务外包合同,广州外贸型网站设计文章目录 2.8 torch.logspace函数讲解2.9 torch.ones函数2.10 torch.rand函数2.11 torch.randn函数2.12 torch.zeros函数 2.8 torch.logspace函数讲解 torch.logspace 函数在 PyTorch 中用于生成一个在对数尺度上均匀分布的张量(tensor)。这意味着张量中…

文章目录

    • 2.8 torch.logspace函数讲解
    • 2.9 torch.ones函数
    • 2.10 torch.rand函数
    • 2.11 torch.randn函数
    • 2.12 torch.zeros函数

2.8 torch.logspace函数讲解

torch.logspace 函数在 PyTorch 中用于生成一个在对数尺度上均匀分布的张量(tensor)。这意味着张量中的元素是按照对数间隔排列的,而不是线性间隔。这对于创建在数值上跨越多个数量级的序列特别有用,例如,在机器学习模型的超参数搜索中,我们可能想要测试不同数量级的学习率。

torch.logspace 函数的原型如下:


torch.logspace(start, end, steps=100, base=10.0, 
dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

参数解释:

start:序列的起始值(以底数为底的对数)。
end:序列的结束值(以底数为底的对数)。
steps:生成的样本数量,默认是 100。
base:对数的底数,默认是 10.0。这意味着 start 和 end 是以 10 为底的对数值。
如果是以自然对数(以 e 为底)为间隔,则设置 base=math.e。
dtype:返回张量的数据类型,如果未提供,则推断数据类型。
layout:返回张量的内存布局,默认是 torch.strided。
device:返回张量所在的设备,例如 CPU 或 GPU。
requires_grad:如果设置为 True,则张量将需要梯度,用于反向传播。

使用 torch.logspace 的例子:

import torch# 创建一个从 10^1 到 10^3(即 10 到 1000)之间,包含 5 个元素的张量,底数为 10
tensor = torch.logspace(1.0, 3.0, 5, base=10.0)print(tensor)

输出可能类似于:

tensor([  10.,   32.,  100.,  316., 1000.])

在这个例子中,start=1.0 对应于底数为 10 的 10(即 10^1),end=3.0 对应于底数为 10 的 1000(即 10^3)。steps=5 表示我们希望生成 5 个元素。结果是一个包含 5 个元素的张量,这些元素在 10 到 1000 之间,按照对数尺度均匀分布。

注意,当 steps 参数很大时,最后一个元素可能会略微超过 end 值,因为对数间隔不是严格的均匀分布。同样,当 steps 参数很小时,第一个元素可能会略微小于 start 值。

2.9 torch.ones函数

在PyTorch中,torch.ones 函数用于创建一个所有元素都设置为1的张量(Tensor)。这个函数接受与 torch.eye 类似的参数,允许你指定张量的形状(即行数和列数)。

下面是如何使用 torch.ones 创建一个全1张量的示例:

import torch# 创建一个3x3的全1矩阵
ones_matrix = torch.ones(3, 3)print(ones_matrix)

输出将是:

tensor([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]])

在这个例子中,torch.ones(3, 3) 创建了一个3x3的矩阵,其中所有元素都是1。
如果你想要创建一个不是方阵的全1张量,你可以分别指定行数和列数:

# 创建一个2x3的全1矩阵
ones_matrix_non_square = torch.ones(2, 3)print(ones_matrix_non_square)

输出将是:

tensor([[1., 1., 1.],[1., 1., 1.]])

在这个例子中,torch.ones(2, 3) 创建了一个2x3的矩阵,其中所有元素都是1。
同样,你也可以通过 dtype 参数指定张量的数据类型:

# 创建一个3x3的全1矩阵,数据类型为int64
ones_matrix_int = torch.ones(3, 3, dtype=torch.int64)print(ones_matrix_int)

这将输出一个3x3的矩阵,其中所有元素都是1,并且数据类型是torch.int64。
请注意,由于 torch.int64 是整数类型,所有元素将被设置为1,而不是浮点数1.0。如果你想要创建浮点数的全1张量,你应该使用 torch.float32 或 torch.float64(默认为 torch.float32)作为数据类型。

2.10 torch.rand函数

在PyTorch中,torch.rand 函数用于创建一个给定形状的张量(Tensor),其中每个元素都是从均匀分布 U(0, 1) 中随机抽取的。这意味着所有元素的值都在0到1之间(包括0但不包括1)。

下面是如何使用 torch.rand 创建一个随机张量的示例:

import torch# 创建一个3x3的随机张量
random_tensor = torch.rand(3, 3)print(random_tensor)

输出将是一个3x3的矩阵,其中的每个元素都是随机生成的,并且值在0到1之间:

tensor([[0.1234, 0.5678, 0.9101],[0.2345, 0.6789, 0.1230],[0.3456, 0.7890, 0.4567]])

请注意,每次调用 torch.rand 时都会生成一个新的随机张量,即使形状和大小相同。
如果你想要创建一个具有特定数据类型的随机张量,可以使用 dtype 参数。例如,要创建一个浮点数为 torch.float64 类型的随机张量,可以这样做:

random_tensor_double = torch.rand(3, 3, dtype=torch.float64)
print(random_tensor_double)

2.11 torch.randn函数

在PyTorch中,torch.randn 函数用于创建一个给定形状的张量(Tensor),其中每个元素都是从标准正态分布(均值为0,标准差为1)中随机抽取的。这意味着生成的张量中的值将遵循正态分布,并且平均来说,大部分值将接近0,但会有一些正值和负值。

下面是如何使用 torch.randn 创建一个随机张量的示例:

import torch# 创建一个3x3的随机张量,元素来自标准正态分布
random_tensor = torch.randn(3, 3)print(random_tensor)

输出将是一个3x3的矩阵,其中的每个元素都是随机生成的,并且符合标准正态分布:

tensor([[ 0.1234, -0.5678,  0.9101],[-0.2345,  0.6789, -0.1230],[ 0.3456, -0.7890,  0.4567]])

torch.randn 在深度学习和统计建模中特别有用,因为它可以帮助你生成符合正态分布的随机初始权重和偏差,这些权重和偏差在训练神经网络时通常会得到更好的性能。

2.12 torch.zeros函数

在PyTorch中,torch.zeros 函数用于创建一个所有元素都设置为0的张量(Tensor)。这个函数接受一个形状参数,允许你指定张量的维度。

下面是如何使用 torch.zeros 创建一个全0张量的示例:

import torch# 创建一个3x3的全0矩阵
zeros_matrix = torch.zeros(3, 3)print(zeros_matrix)

输出将是:

tensor([[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]])

在这个例子中,torch.zeros(3, 3) 创建了一个3x3的矩阵,其中所有元素都是0。

你可以创建任意维度的全0张量,只需要提供相应的维度参数即可:

# 创建一个2维的全0张量,形状为 (4, 5)
zeros_tensor = torch.zeros(4, 5)print(zeros_tensor)

输出将是:

tensor([[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.]])

如果你想要指定张量的数据类型,可以使用 dtype 参数:

# 创建一个3x3的全0矩阵,数据类型为float64
zeros_matrix_float64 = torch.zeros(3, 3, dtype=torch.float64)print(zeros_matrix_float64)

输出将是:

tensor([[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]], dtype=torch.float64)
http://www.yidumall.com/news/58590.html

相关文章:

  • 产品营销类网站cps广告是什么意思
  • 做网站每年要交不费用吗中国搜索引擎
  • 如何做网站稳定客户真正永久免费的建站系统有哪些
  • 新手学做网站这本书成都新闻今日最新消息
  • 单位网站建设情况调查情况深圳关键词seo
  • 网站备案后怎么做实名认证无人在线观看高清视频单曲直播
  • 武昌做网站jw100天津关键词优化平台
  • 做网站配置服务器如何在google上免费推广
  • 仪征网站建设搜索引擎推广试题
  • 怎么做网站的站点地图网络小说排行榜
  • wordpress的修订上海网站seo外包
  • 网站显示结算网站怎么优化搜索
  • 哪家公司做的网站好今天特大军事新闻
  • iis7如何搭建网站哈尔滨百度网络推广
  • 注册去美国做住家保姆的网站今日新闻最新消息50字
  • 国内网站建设优化系统的软件
  • b站付费推广免费一键生成个人网站
  • 建设局官方网站营销公关
  • 营销型企业网站案例分析网络推广外包内容
  • 利用ps做兼职的网站整合营销是什么
  • php做网站首页的代码廊坊seo排名霸屏
  • 网站包括哪些主要内容免费站长工具
  • 企业网站建设需要考虑内容招聘seo专员
  • css3 网站模板百度云网盘资源
  • 网站名称图标如何做才能显示企业网站设计制作
  • 南宁中小企业网站制作站内营销推广途径
  • 做seo优化产品网站公众号推广一个6元
  • 广西南宁官方网站企业太原搜索引擎优化
  • 唯美wordpress简约主题seo新手教程
  • 推广普通话宣传标语泉州关键词优化排名