当前位置: 首页 > news >正文

wordpress 头条号百度推广优化公司

wordpress 头条号,百度推广优化公司,怎么提高网站加载速度慢,智慧校园文章目录 前言原理代码实例scipy 实现seaborn 实现 前言 高斯核密度估计本是一种机器学习算法,在数学建模中也可以发挥作用。本文主要讨论用它来拟合变量的概率密度,获得概率密度函数 f ( x ) f(x) f(x)。 原理 已知一个连续型随机变量 X X X 的一系列…

文章目录

    • 前言
    • 原理
    • 代码实例
      • scipy 实现
      • seaborn 实现

前言

  高斯核密度估计本是一种机器学习算法,在数学建模中也可以发挥作用。本文主要讨论用它来拟合变量的概率密度,获得概率密度函数 f ( x ) f(x) f(x)

原理

  已知一个连续型随机变量 X X X 的一系列观测值 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,,Xn,我们可以用高斯核密度估计来拟合出 X X X 的概率密度函数 f ( x ) f(x) f(x)

代码实例

scipy 实现

  先给出代码,后面慢慢解释。

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde# 为测试 gaussian_kde 效果,当场生成1000个beta分布的随机数
np.random.seed(114)
info = np.random.beta(a=2, b=5, size=1000)# 根据一系列观测值 info,拟合出概率密度
# 这个 gaussian_kde 有个神奇的参数 bw_method,说是计算估计器带宽的方法,可以调一下
kde = gaussian_kde(info)
x = np.linspace(min(info), max(info), 1000)
pdf = kde.evaluate(x)# 开始作图# 指定楷体以显示中文字体
plt.rcParams["font.sans-serif"] = ['KaiTi']
fig = plt.figure()
ax1 = fig.add_subplot(111, label="1")
ax2 = fig.add_subplot(111, label="2", frame_on=False)# 100 指的是 100 个直方条
ax1.hist(info,100, color='r', alpha=0.4)
ax1.set_xlabel("观测值")
ax1.set_ylabel("观测频数")ax2.plot(x, pdf, c = 'b')
ax2.set_xticks([])
ax2.set_ylabel("拟合概率密度")
ax2.yaxis.tick_right()
ax2.yaxis.set_label_position('right')
plt.show()

  图画出来是这样的:

  • 6 − 7 6-7 67 行,按照 β \beta β 分布生成了一个含有 1000 1000 1000 个随机数的info。实际建模的时候,这个info应该是题目给我们的数据样本。
  • 11 11 11 行由info得到一个kde对象,kde.evaluate()实际上就是概率密度函数,传一个 x x x 就返回一个 f ( x ) f(x) f(x)
  • 12 − 13 12-13 1213 行是取了横轴上的一些数据点获取概率密度用于后续画图,如果把x记作 [ x 1 , ⋯ , x n ] [x_1,\cdots,x_n] [x1,,xn] 那么pdf就是 [ f ( x 1 ) , ⋯ , f ( x n ) ] [f(x_1),\cdots,f(x_n)] [f(x1),,f(xn)]
  • 18 18 18 行到最后都是在画图。

  如果你觉得拟合效果不佳,可以调整gaussian_kdebw_method参数。这个东西是采样宽度,换句话说它越大 f ( x ) f(x) f(x) 越粗糙,它越小 f ( x ) f(x) f(x) 更容易过拟合。比如我在上面的kde = gaussian_kde(info)中加入参数bw_method=0.1,画出来这样的图:

  明显有些过拟合,但是很多时候我们需要这种过拟合。

seaborn 实现

  Seaborn 作为一个强大的 Python 可视化库,也内置了高斯核密度估计的功能。Seaborn 只需要一行代码即可画出核密度估计图,但是它无法返回pdf或者kde等对象,也就是说我们只能看到 y = f ( x ) y=f(x) y=f(x) 的大致图像,却无法获取 f ( x 0 ) f(x_0) f(x0) x 0 x_0 x0 是某个具体值,比如 x 0 = 5 x_0=5 x0=5)的值。如果你的目的只是为了可视化,展示随机变量 X X X 的集中程度和均值情况,那么 seaborn 无疑是更方便的选择。

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 为测试 gaussian_kde 效果,当场生成1000个beta分布的随机数
np.random.seed(114)
info = np.random.beta(a=2, b=5, size=1000)# seaborn 作图
sns.set_style("whitegrid") # 风格设置
sns.kdeplot(info,shade=True, color="g") # 概率密度函数底下填充绿色阴影
plt.show()

  画出来效果如下,该图象轮廓与上面的应该是一样的。如果有两个分布类似的样本,使用 seaborn 用不同颜色画出概率密度函数,将会对比鲜明,非常好看。

  除了kdeplot,seaborn 库里的distplot也可以进行高斯核密度估计,优点是它还能带上直方图。

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 为测试 gaussian_kde 效果,当场生成1000个beta分布的随机数
np.random.seed(114)
info = np.random.beta(a=2, b=5, size=1000)# seaborn 作图
sns.set_style("whitegrid") # 风格设置
sns.distplot(info)
plt.show()

  你也可以调整distplot的参数,hist=False不画直方图,kde=False不画概率密度函数。

http://www.yidumall.com/news/53550.html

相关文章:

  • 做微商想做个网站百度广告投放代理商
  • 个人网站怎么建国内最好的seo培训
  • 昆明做网站哪家好软文世界官网
  • wordpress底部的横线深圳专门做seo的公司
  • 做淘宝客需要建网站吗如何建立自己的网站?
  • wordpress设置文章图片网站关键词免费优化
  • 在线定制手机壳seo外包网络公司
  • 金融公司网站建设seo课程心得体会
  • 湖南省建设厅安许审核公布网站seo排名查询工具
  • 做盗版网站 国外服务器百度引流怎么推广
  • 网站地图深度做多少合适深圳网络推广专员
  • 滨州网站建设九鲁保定seo推广外包
  • b2c购物网站建设刷死粉网站推广
  • 合肥企业网站建设工作室百度知道问答
  • 网站建设前会计培训班有用吗
  • 看风格的网站重大军事新闻最新消息
  • wordpress域名重复最新seo视频教程
  • 成品网站怎样建设线上推广有哪些渠道
  • 互联网做网站排明济南seo整站优化厂家
  • 三亚学做网站培训网络营销顾问是做什么的
  • 产品介绍网站源码怎么在百度推广自己的公司
  • 微网站开发平台网络营销推广工具
  • 泰安网红打卡景点谷歌seo关键词排名优化
  • 网站服务器建设啥都能看的浏览器
  • 怎么用大淘客做网站百度站内搜索的方法
  • 免费网站制作范例营销型网站重要特点是
  • 做logo网站的公司免费个人网站平台
  • 软件开发入门教程seo网络推广是什么意思
  • 做网站应选那个主题网络推广的好处
  • 网站谁家做得好百度推广网址