当前位置: 首页 > news >正文

做网站开发的有外快嘛广告推广一个月多少钱

做网站开发的有外快嘛,广告推广一个月多少钱,蜀都网站建设舜王,第三方公司做网站价格LSTM回归网络(1→1) 长短期记忆网络 - 通常只称为“LSTM” - 是一种特殊的RNN,能够学习长期的规律。 它们是由Hochreiter&Schmidhuber(1997)首先提出的,并且在后来的工作中被许多人精炼和推广。…

LSTM回归网络(1→1)

长短期记忆网络 - 通常只称为“LSTM” - 是一种特殊的RNN,能够学习长期的规律。 它们是由Hochreiter&Schmidhuber(1997)首先提出的,并且在后来的工作中被许多人精炼和推广。他们在各种各样的问题上应用得非常好,现在被广泛的使用。

LSTM简介

有一串时间序列数据[112,118,132,129,121,135],训练的本质是用后一个步长的数据作为Y去对应当前的X。
用一个步长预测一个,监督学习数据类型1->1
X Y
112 118
118 132
132 129
129 121
121 135

问题描述

所给的数据文件是1949-1960每月的航班乘客数量
在这里插入图片描述

源代码

# LSTM for international airline passengers problem with regression framing
import numpy
import matplotlib.pyplot as plt
from pandas import read_csv
import math
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
"""
用一个步长预测一个,监督学习数据类型1->1
X		    Y
112		118
118		132
132		129
129		121
121		135
"""
# 将数据截取成1->1的监督学习格式
def create_dataset(dataset, look_back=1):dataX, dataY = [], []for i in range(len(dataset)-look_back-1):a = dataset[i:(i+look_back), 0]dataX.append(a)dataY.append(dataset[i + look_back, 0])return numpy.array(dataX), numpy.array(dataY)
# 定义随机种子,以便重现结果
numpy.random.seed(7)
# 加载数据
dataframe = read_csv('airline-passengers.csv', usecols=[1], engine='python')
dataset = dataframe.values
dataset = dataset.astype('float32')
# 缩放数据
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
# 分割2/3数据作为测试
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
# 预测数据步长为1,一个预测一个,1->1
look_back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
# 重构输入数据格式 [samples, time steps, features] = [93,1,1]
trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
# 构建 LSTM 网络
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)
# 对训练数据的Y进行预测
trainPredict = model.predict(trainX)
# 对测试数据的Y进行预测
testPredict = model.predict(testX)
# 对数据进行逆缩放
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
# 计算RMSE误差
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
print('Test Score: %.2f RMSE' % (testScore))# 构造一个和dataset格式相同的数组,共145行,dataset为总数据集,把预测的93行训练数据存进去
trainPredictPlot = numpy.empty_like(dataset)
# 用nan填充数组
trainPredictPlot[:, :] = numpy.nan
# 将训练集预测的Y添加进数组,从第3位到第93+3位,共93行
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict# 构造一个和dataset格式相同的数组,共145行,把预测的后44行测试数据数据放进去
testPredictPlot = numpy.empty_like(dataset)
testPredictPlot[:, :] = numpy.nan
# 将测试集预测的Y添加进数组,从第94+4位到最后,共44行
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict# 画图
plt.plot(scaler.inverse_transform(dataset))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()

代码注释

1、scaler = MinMaxScaler(feature_range=(0, 1))。这段代码的意思是使用MinMaxScaler对数据进行归一化处理,将特征值缩放到0到1的范围内。

2、dataset = scaler.fit_transform(dataset)。这是一个常见的数据预处理步骤,将数据集进行归一化(或标准化)。在这个过程中,scaler是一个用于缩放数据的对象,可以使用fit_transform方法来对数据集进行归一化处理。这个方法会计算数据集的均值和标准差,并将数据进行转换,使得数据的分布符合均值为0,标准差为1的正态分布。通过归一化可以使得数据的不同特征在相同的尺度上进行比较和分析。转换后的部分数据如下:
在这里插入图片描述

3、model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss=‘mean_squared_error’, optimizer=‘adam’)
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)。
这段代码是使用Keras库构建了一个简单的循环神经网络(LSTM)模型。模型使用一个LSTM层,输入形状为(1, look_back),其中look_back是用于预测的时间步数。然后,通过添加一个全连接层(Dense)来输出预测结果。模型使用均方误差作为损失函数,优化器选择Adam。训练时使用了trainX作为输入数据,trainY作为目标数据,通过100个epochs进行训练,每个batch的大小为1,并且设置verbose=2打印训练过程的日志信息。

结果

在这里插入图片描述

参考博文

LSTM模型介绍

http://www.yidumall.com/news/40304.html

相关文章:

  • 沈阳商城网站制作创意营销策划方案
  • 百度怎么自己做网站网站推广服务
  • 网站底部加编码华联股份股票
  • 做网站的支付网站推广的平台
  • wordpress 缩略图无锡seo培训
  • 栾城做网站百度推广怎么做
  • 灵台门户网站建设seo单页快速排名
  • 网站中如何做图片轮播设计公司
  • 成都建设企业网站软文写作案例
  • 番禺品牌型网站建设长春关键词搜索排名
  • 简单网站建设优化推广注册域名要钱吗
  • 找公司网站建设3郑州网站定制
  • 网站多种语言是怎么做的seo关键词分析表
  • 怎么样申请网站域名seo免费视频教程
  • 光明乳业网站建设情况企业培训网
  • 网站设计平台及开发工具职业技能培训网上平台
  • 文化公司网站建设策划书营销软文广告
  • 什么是网络营销总体环境因素北京seo排名外包
  • 重庆双八自助建设网站个人网站建设
  • 做网站建设电话销售搜狐财经峰会直播
  • 阿里巴巴对外贸易平台网站优化工具
  • what is wordpress谷歌seo代运营
  • 服务器域名已有做网站快速排名教程
  • 网站开发完整视频谷歌官网下载
  • 可以做批发的跨境电商网站平台怎么做公司网站推广
  • 网站建设要写代码吗免费网站开发平台
  • 北京市建设官方网站百度关键词排名用什么软件
  • 佛山新网站制作咨询百度一下你就知道首页
  • seo搜索引擎优化5成都官网seo费用
  • 成都市装修公司前十强嘉兴百度快照优化排名