当前位置: 首页 > news >正文

做网站的支付网站推广的平台

做网站的支付,网站推广的平台,宁波网站制作哪家优惠多,网站建设演讲稿多维时序 | Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测 目录 多维时序 | Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现VMD-CN…

多维时序 | Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测

目录

    • 多维时序 | Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测;

2.运行环境为Matlab2021及以上;

3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;

4.data为数据集,main1_VMD.m、main2_VMD_CNN_GRU.m为主程序,运行即可,所有文件放在一个文件夹;

5.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;

VMD-CNN-GRU是一种结合了变分模态分解(VMD)、卷积神经网络(CNN)和门控循环单元(GRU)的多变量时间序列预测模型。这种模型在处理复杂时间序列数据时,能够有效地提取特征、捕捉时间依赖关系,并进行准确的预测。

首先,变分模态分解(VMD)是一种自适应的信号处理方法,能够将原始时间序列数据分解为一系列具有不同频率的子序列。这种分解有助于提取出数据中的关键特征,并降低噪声对预测结果的影响。

接下来,卷积神经网络(CNN)被用于进一步处理这些子序列。CNN具有强大的特征提取能力,能够自动学习并提取出子序列中的有用信息。通过卷积操作,CNN可以有效地捕捉到数据中的局部特征和空间依赖关系。

然后,门控循环单元(GRU)被用来处理经过CNN处理后的数据。GRU是一种循环神经网络(RNN)的变体,它具有更好的长期依赖关系捕捉能力。通过GRU的更新门和重置门机制,模型可以学习到时间序列数据中的时间依赖关系,并生成准确的预测结果。

程序设计

  • 完整程序和数据获取方式资源处下载Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res =xlsread('data.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);f_ = size(P_train, 1);                  % 输入特征维度%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);% 输入特征sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。% CNN特征提取convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,641表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题% 池化层maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式% 展开层sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复%平滑层flattenLayer('name','flatten')gruLayer(25,'Outputmode','last','name','hidden1') dropoutLayer(0.2,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

http://www.yidumall.com/news/40299.html

相关文章:

  • wordpress 缩略图无锡seo培训
  • 栾城做网站百度推广怎么做
  • 灵台门户网站建设seo单页快速排名
  • 网站中如何做图片轮播设计公司
  • 成都建设企业网站软文写作案例
  • 番禺品牌型网站建设长春关键词搜索排名
  • 简单网站建设优化推广注册域名要钱吗
  • 找公司网站建设3郑州网站定制
  • 网站多种语言是怎么做的seo关键词分析表
  • 怎么样申请网站域名seo免费视频教程
  • 光明乳业网站建设情况企业培训网
  • 网站设计平台及开发工具职业技能培训网上平台
  • 文化公司网站建设策划书营销软文广告
  • 什么是网络营销总体环境因素北京seo排名外包
  • 重庆双八自助建设网站个人网站建设
  • 做网站建设电话销售搜狐财经峰会直播
  • 阿里巴巴对外贸易平台网站优化工具
  • what is wordpress谷歌seo代运营
  • 服务器域名已有做网站快速排名教程
  • 网站开发完整视频谷歌官网下载
  • 可以做批发的跨境电商网站平台怎么做公司网站推广
  • 网站建设要写代码吗免费网站开发平台
  • 北京市建设官方网站百度关键词排名用什么软件
  • 佛山新网站制作咨询百度一下你就知道首页
  • seo搜索引擎优化5成都官网seo费用
  • 成都市装修公司前十强嘉兴百度快照优化排名
  • 用什么软件做网站交互效果专业网站推广优化
  • 龙采做网站要多少钱福建seo
  • 天津网站制作专业国内疫情最新消息
  • 金湖网站建设公司快速建站