当前位置: 首页 > news >正文

微网站可以做商城吗百度建站官网

微网站可以做商城吗,百度建站官网,中国做网站的公司有哪些,凡科做网站行吗关系(二)利用python绘制热图 热图 (Heatmap)简介 热图适用于显示多个变量之间的差异,通过颜色判断彼此之间是否存在相关性。 快速绘制 基于seaborn import seaborn as sns import pandas as pd import numpy as np i…

关系(二)利用python绘制热图

热图 (Heatmap)简介

1

热图适用于显示多个变量之间的差异,通过颜色判断彼此之间是否存在相关性。

快速绘制

  1. 基于seaborn

    import seaborn as sns
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib as mpl# 自定义数据
    df = pd.DataFrame(np.random.random((5,5)), columns=["a","b","c","d","e"])# 利用seaborn的heatmap函数创建
    sns.heatmap(df)plt.show()
    

    2

定制多样化的热图

自定义热图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。

seaborn主要利用heatmap绘制热图,可以通过seaborn.heatmap了解更多用法

  1. 不同输入格式的热图

    import matplotlib.pyplot as plt
    import numpy as np
    import seaborn as sns
    import pandas as pd
    np.random.seed(0)sns.set(font='SimHei', font_scale=0.8, style="white") # 解决Seaborn中文显示问题# 初始化
    fig = plt.figure(figsize=(12,8))# 宽型:是一个矩阵,其中每一行都是一个个体,每一列都是一个观察值。即热图的每个方块代表一个单元格
    df = pd.DataFrame(np.random.random((6,5)), columns=["a","b","c","d","e"])ax = plt.subplot2grid((2, 2), (0, 0), colspan=1)
    sns.heatmap(df)
    ax.set_title('宽型')# 方型:相关矩阵热图
    df = pd.DataFrame(np.random.random((100,5)), columns=["a","b","c","d","e"]) 
    corr_matrix=df.corr() # 计算相关矩阵ax = plt.subplot2grid((2, 2), (0, 1), colspan=1)
    sns.heatmap(corr_matrix)
    ax.set_title('方型')# 方型:对角矩阵
    df = pd.DataFrame(np.random.random((100,5)), columns=["a","b","c","d","e"]) 
    corr_matrix=df.corr() # 计算相关矩阵
    mask = np.zeros_like(corr_matrix)
    mask[np.triu_indices_from(mask)] = True # 生成上三角蒙版ax = plt.subplot2grid((2, 2), (1, 0), colspan=1)
    sns.heatmap(corr_matrix, mask=mask, square=True)
    ax.set_title('方型-对角矩阵')# 长型:每一行代表一个观测结果,输入三个变量(x,y,z)
    people = np.repeat(("A","B","C","D","E"),5)
    feature = list(range(1,6))*5
    value = np.random.random(25)
    df = pd.DataFrame({'feature': feature, 'people': people, 'value': value })
    # 数据透视
    df_wide = df.pivot_table( index='people', columns='feature', values='value') ax = plt.subplot2grid((2, 2), (1, 1), colspan=1)
    sns.heatmap(df_wide)
    ax.set_title('长型')fig.tight_layout() # 自动调整间距
    plt.show()
    

    3

  2. 自定热图

    import matplotlib.pyplot as plt
    import numpy as np
    import seaborn as sns
    import pandas as pd
    np.random.seed(0)sns.set(font='SimHei', font_scale=0.8, style="white") # 解决Seaborn中文显示问题# 自定义数据
    df = pd.DataFrame(np.random.random((10,10)), columns=["a","b","c","d","e","f","g","h","i","j"])# 初始化
    fig = plt.figure(figsize=(9,8))# 显示值标签
    ax = plt.subplot2grid((3, 2), (0, 0), colspan=1)
    sns.heatmap(df, annot=True, annot_kws={"size": 7})
    ax.set_title('显示值标签')# 自定义网格线
    ax = plt.subplot2grid((3, 2), (0, 1), colspan=1)
    sns.heatmap(df, linewidths=2, linecolor='yellow')
    ax.set_title('自定义网格线')# 移除x、y或者颜色bar
    ax = plt.subplot2grid((3, 2), (1, 0), colspan=1)
    sns.heatmap(df, yticklabels=False, cbar=False)
    ax.set_title('移除部分轴元素')# 减少标签数量
    ax = plt.subplot2grid((3, 2), (1, 1), colspan=1)
    sns.heatmap(df, xticklabels=4)
    ax.set_title('减少标签数量')# 指定中心值
    ax = plt.subplot2grid((3, 2), (2, 0), colspan=1)
    sns.heatmap(df, center=1)
    ax.set_title('指定中心值')# 指定颜色
    ax = plt.subplot2grid((3, 2), (2, 1), colspan=1)
    sns.heatmap(df, cmap="YlGnBu")
    ax.set_title('指定颜色')fig.tight_layout() # 自动调整间距
    plt.show()
    

    4

  3. 数据标准化

    import matplotlib.pyplot as plt
    import numpy as np
    import seaborn as sns
    import pandas as pd
    np.random.seed(0)sns.set(font='SimHei', font_scale=0.8, style="white") # 解决Seaborn中文显示问题# 自定义数据
    df = pd.DataFrame(np.random.randn(10,10) * 4 + 3)
    # 列含异常值与标准化
    df_col = df.copy()
    df_col[1]=df_col[1]+40 # 构造异常数据点
    df_norm_col=(df_col-df_col.mean())/df_col.std() # 按列标准化
    # 行含异常值与标准化
    df_row = df.copy()
    df_row.iloc[2]=df_row.iloc[2]+40 # 构造异常数据点
    df_norm_row = df_row.apply(lambda x: (x-x.mean())/x.std(), axis = 1) # 按行标准化# 初始化
    fig = plt.figure(figsize=(12,8))# 列含异常数据
    ax = plt.subplot2grid((2, 2), (0, 0), colspan=1)
    sns.heatmap(df_col, cmap='viridis')
    ax.set_title('列含异常数据')# 按列标准化
    ax = plt.subplot2grid((2, 2), (0, 1), colspan=1)
    sns.heatmap(df_norm_col, cmap='viridis')
    ax.set_title('按列标准化')# 行含异常数据
    ax = plt.subplot2grid((2, 2), (1, 0), colspan=1)
    sns.heatmap(df_row, cmap='viridis')
    ax.set_title('行含异常数据')# 按行标准化
    ax = plt.subplot2grid((2, 2), (1, 1), colspan=1)
    sns.heatmap(df_norm_col, cmap='viridis')
    ax.set_title('按行标准化')fig.tight_layout() # 自动调整间距
    plt.show()
    

    5

  4. 引申-聚类热图

    可以通过seaborn.clustermap了解更多用法

    import matplotlib.pyplot as plt
    import numpy as np
    import seaborn as sns
    import pandas as pd# 导入数据
    df = pd.read_csv('https://raw.githubusercontent.com/holtzy/The-Python-Graph-Gallery/master/static/data/mtcars.csv')
    df = df.set_index('model')# 基本聚类热图
    g = sns.clustermap(df, standard_scale=1) # 标准化处理plt.show()
    

    5

总结

以上通过seaborn的heatmap快速绘制热图,并通过修改参数或者辅以其他绘图知识自定义各种各样的热图来适应相关使用场景。

共勉~

http://www.yidumall.com/news/22972.html

相关文章:

  • 一诺互联网站建设公司杭州网站定制
  • wordpress通知站点bing微信广告投放收费标准
  • 那个网站专门做二手衣服最受欢迎的十大培训课程
  • 跨境电商独立站是什么意思苏州seo推广
  • 厦门市建设局网站摇号网站软件下载app
  • 做网站用的动漫资料seo怎么优化步骤
  • wordpress插件一键宁波seo推荐
  • web期末网站设计大作业一级域名生成二级域名
  • 恩施建站建设2022年新闻热点摘抄
  • 北京低价做网站百度如何注册公司网站
  • 东莞公司注册登记湘潭seo优化
  • 国外自适应网站模版广东短视频seo搜索哪家好
  • 超值的网站建设百度广告登录入口
  • 深圳网站建设工作室seo 推广怎么做
  • wordpress图片模糊加载草根seo视频大全
  • 网站建设定制网站建设公司北京seo网站管理
  • 差异基因做热图在线网站企业类网站有哪些例子
  • 《网站建设与管理》方案百度点击工具
  • 免费网站正能量小说昆明seo
  • 网站推广最有效的方法百度网站推广排名
  • 做网站框架浏览时怎么变长网店如何做推广
  • 怎么建网站seo优化 搜 盈seo公司
  • 金蝶二次开发seo排名优化什么意思
  • 上海做网站自媒体运营主要做什么
  • WordPress P站活动营销
  • 做的好的响应式网站有哪些站长工具
  • 安徽电子信息工程技术学院校园网搜索引擎优化seo是什么
  • 上海广告公司大全seo是哪个国家
  • 怎么看一个网站是由哪个公司做的推广链接
  • 温州网站建设 温州网站制作semi认证