当前位置: 首页 > news >正文

有哪些做公司网站的中文域名注册官网入口

有哪些做公司网站的,中文域名注册官网入口,小程序sdk开发,建设网站需要哪些语言1.AI识别 1.bitgrit 生成式 AI API 文档 生成式 AI 假图像检测 API 可用于以编程方式检测假图像(即由生成式 AI 创建的图像)。2.X Virality Prediction API 旨在预测推文的潜在病毒式传播力。https://bitgrit.net/api/docs/x_virality_prediction 2.Gr…

1.AI识别

  • 1.bitgrit 生成式 AI API 文档
    生成式 AI 假图像检测 API 可用于以编程方式检测假图像(即由生成式 AI 创建的图像)。
  • 2.X Virality Prediction API 旨在预测推文的潜在病毒式传播力。
  • https://bitgrit.net/api/docs/x_virality_prediction

2.GraphRAG

所有性能改进技术都有一个缺陷:token 的使用和推理时间都会增加。
支持 GraphRAG 的基本流程是建立在先前对图机器学习的研究和代码库上的:LLM 处理全部私有数据集,为源数据中所有实体和关系创建引用,并将其用于创建 LLM 生成的知识图谱。利用生成的图谱创建自下而上的聚类,将数据分层并组织成语义聚类(在图三中由颜色标识)。这种划分让预先总结语义概念和主题成为可能,从而更全面地理解数据集。在查询时,两种结构均被用于填充 LLM 回答问题时的上下文窗口。

3.什么是低秩自适应(LoRA)?

LoRA 是一种加速 LLM 微调同时消耗更少内存的技术。
在这里插入图片描述

这不涉及对整个基础模型进行微调,因为这可能需要耗费大量的时间和金钱。

相反,它会向模型中添加少量可训练参数,同时保持原始模型参数不变。

为什么选择 LoRA?

尽管我们使用 LoRA 为模型添加了更多层,但它实际上有助于节省内存。

这是因为与大模型相比,较小的层(A 和 B)需要学习的参数较少,而可训练参数较少意味着需要存储的优化器变量较少。

因此,尽管整体模型看起来更大,但就内存使用而言实际上更高效。

什么是等级?
秩决定了添加到 LLM 原始权重的可训练矩阵的维度。它控制微调的表达能力和精度。

等级越高 = 可能的变化越详细,可训练的参数越多
等级越低 = 计算开销越少,但适应的精度可能会更低

任何人工智能问题中最重要的因素是数据

4. 线性变换

在这里插入图片描述

线性变换是两个向量空间之间的映射V → W,保留向量加法和标量乘法的运算。

实际上,将矩阵A应用于向量x以获得另一个向量y(通过操作Ax = y)是一种线性变换。

import numpy as np
import matplotlib.pyplot as plt# Linear Transformation of a Square
T = np.array([[1, 2], [2, 1]])  # Transformation matrix
square = np.array([[0, 0, 1, 1, 0], [0, 1, 1, 0, 0]])  # Original square
transformed_square = np.dot(T, square)  # Apply transformation# Plot Original and Transformed Square
plt.figure(figsize=(8, 4))# Original Square
plt.subplot(1, 2, 1)
plt.plot(square[0], square[1], 'o-', color='blue')
plt.title('Original Square')
plt.xlim(-1, 3)
plt.ylim(-1, 3)
plt.axhline(0, color='grey', linewidth=0.5)
plt.axvline(0, color='grey', linewidth=0.5)
plt.grid(True)# Transformed Square
plt.subplot(1, 2, 2)
plt.plot(transformed_square[0], transformed_square[1], 'o-', color='red')
plt.title('Transformed Square')
plt.xlim(-1, 3)
plt.ylim(-1, 3)
plt.axhline(0, color='grey', linewidth=0.5)
plt.axvline(0, color='grey', linewidth=0.5)
plt.grid(True)plt.show()

在这里插入图片描述

线性变换经常用于:
降维:PCA利用线性变换将高维数据映射到低维空间
数据变换:对数据集进行规范化或标准化是一种线性变换
特征工程:通过组合现有特征来创建新特征。

5. 特征向量和特征值

特征向量和特征值表示变换的“轴”。

特征向量是经过线性变换后方向不变的输入。即使方向不变,大小也可能变。这个大小,即特征向量放大或缩小的量,就是特征值。

想象一下当你旋转地球仪时,除了两极之外,每个位置都朝向一个新的方向。它们的方向不会改变。

这是特征向量的直观示例。
在这里插入图片描述
形式上,对于矩阵A和向量v,如果Av = λv,则λ是特征值,v是A的特征向量。

import numpy as np
import matplotlib.pyplot as plt# Eigenvectors and Eigenvalues
A = np.array([[1, 2], [2, 3]])
eigenvalues, eigenvectors = np.linalg.eig(A)print_matrix(A)# Plotting
fig, ax = plt.subplots()# Origin
origin = [0, 0]# Plot each eigenvector
for i in range(len(eigenvalues)):ax.quiver(*origin, eigenvectors[0, i], eigenvectors[1, i], scale=3, scale_units='xy', angles='xy')ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
ax.set_aspect('equal')
ax.grid(True)
ax.set_title('Eigenvectors of A')plt.show()

在这里插入图片描述

http://www.yidumall.com/news/99578.html

相关文章:

  • 北京网站建设方案策划营销型网站建设专家
  • 建网站需要注册公司吗大同优化推广
  • 云南省城乡和住房建设厅网站网上推广怎么做
  • js网站统计代码搜索引擎优化实验报告
  • 国外服务器商百度seo点击工具
  • 平台式网站大连seo
  • 关于做网站电话销售广东疫情动态人民日报
  • 做外贸网站建设广东seo加盟
  • 手机网站方案.doc中国培训网官网
  • 嘉定网站建设seo排名点击首页
  • 傻瓜网站建设每日新闻摘抄10一15字
  • 十大顶级咨询公司优化网站内容
  • 怎么做房地产网站天津外贸seo推广
  • 网站收录入口申请win10优化大师怎么样
  • 制作网站要步骤广告投放是做什么的
  • 网站优化计划杭州seo博客
  • 杭州行业网站建设公司如何做百度关键词推广
  • 一学一做短视频网站怎么给自己的网站设置关键词
  • mobile 网站流量房地产最新消息
  • 上海地区网站开发公司百度一下你就知道官方网站
  • 申远空间设计公司seo推广是什么意思呢
  • 建站宝盒nicebox下载惠州seo收费
  • 网站导航栏下拉菜单搜索引擎营销的步骤
  • 管理咨询有限公司的经营范围百度搜索引擎关键词优化
  • 建设网站如何写文案sem是什么显微镜
  • 网页设计网站怎么放到域名里2020年百度搜索排名
  • 网站建设未完成网页搜索引擎优化技术
  • 采购网有哪些平台成都关键词优化平台
  • 深圳手机网站设计长春seo整站优化
  • 苏州做网站优化公司哪家好软文推广代表平台