当前位置: 首页 > news >正文

win7 iis网站设置网络营销岗位有哪些

win7 iis网站设置,网络营销岗位有哪些,做商品网站,做的最好的相亲网站有哪些一、引言 在算法领域中,网格路径问题是一个经典的动态规划应用场景。这类问题通常涉及在一个二维网格中从起点到终点的路径规划,机器人每次只能向右或向下移动一步。本文将深入探讨两种典型的网格路径问题:基础无障碍版本和带障碍物版本&…

一、引言

在算法领域中,网格路径问题是一个经典的动态规划应用场景。这类问题通常涉及在一个二维网格中从起点到终点的路径规划,机器人每次只能向右或向下移动一步。本文将深入探讨两种典型的网格路径问题:基础无障碍版本和带障碍物版本,并详细分析它们的动态规划解法。

二、问题一:基础无障碍网格路径

2.1 问题描述:

一个机器人位于 M 行 N 列网格的左上角 (0,0),每次只能向右或向下移动一步。目标是到达网格右下角 (M-1,N-1),求所有可能的路径数量。

输入格式:一行,两个整数,分别表示网格的行数M和列数N(0<M,N≤100)
输出格式:一行,一个整数,表示从左上角走到右下角的不同的路径条数
输入样例:2 3
输出样例:3

2.2 动态规划解法:

我们使用二维数组 dp[i][j] 表示从起点 (0,0) 到达位置 (i,j) 的路径数量。

2.3 状态转移方程

dp[i][j] = dp[i-1][j] + dp[i][j-1]

2.4 边界条件

  • 第一行所有位置:只能从左边向右移动到达

  • 第一列所有位置:只能从上边向下移动到达

2.5 C++ 代码实现:

#include <iostream>
using namespace std;const int MAX_SIZE = 101;
int dp[MAX_SIZE][MAX_SIZE];int main() {int M, N;cin >> M >> N;// 初始化边界条件for (int i = 0; i < M; i++) dp[i][0] = 1;for (int j = 0; j < N; j++) dp[0][j] = 1;// 动态规划填表for (int i = 1; i < M; i++) {for (int j = 1; j < N; j++) {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}cout << dp[M-1][N-1];return 0;
}

2.6 算法分析

  • 时间复杂度:O(M×N),需要填充整个网格

  • 空间复杂度:O(M×N),使用二维数组存储中间状态

  • 关键点:边界条件的处理是解决问题的基石

三、问题二:带障碍物的网格路径

3.1 问题描述

在基础问题基础上增加障碍物,机器人不能通过障碍物位置。给定障碍物坐标,计算从左上角到右下角的路径数量(无法到达时输出0)。

输入格式:
第一行:两个整数 M 和 N,表示网格的行数和列数

第二行:一个整数 K,表示障碍物的数量

接下来 K 行:每行两个整数 X 和 Y,表示障碍物的坐标(行和列均从0开始计数)

输出格式:
一个整数,表示路径数量(若无法到达,输出0)

输入样例:
5 6
5
1 1
1 3
3 2
3 4
4 3
输出样例:
5

3.2 动态规划解法改进

使用二维数组 dp[i][j] 表示到达 (i,j) 的路径数量,obstacle[i][j] 标记障碍物位置。

3.3 状态转移方程

如果 (i,j) 无障碍物:dp[i][j] = dp[i-1][j] + dp[i][j-1]
否则:dp[i][j] = 0

3.4 边界条件调整

  • 起点有障碍物:直接返回0

  • 第一行/列:一旦遇到障碍物,后续位置均不可达

3.5 C++ 代码实现

#include <iostream>
#include <vector>
using namespace std;const int MAX_SIZE = 101;
int dp[MAX_SIZE][MAX_SIZE];
bool obstacle[MAX_SIZE][MAX_SIZE] = {false};int main() {int M, N, K;cin >> M >> N >> K;// 标记障碍物for (int i = 0; i < K; i++) {int x, y;cin >> x >> y;obstacle[x][y] = true;}// 起点处理if (obstacle[0][0]) {cout << 0;return 0;}// 初始化边界dp[0][0] = 1;for (int i = 1; i < M; i++) dp[i][0] = obstacle[i][0] ? 0 : dp[i-1][0];for (int j = 1; j < N; j++) dp[0][j] = obstacle[0][j] ? 0 : dp[0][j-1];// 动态规划填表for (int i = 1; i < M; i++) {for (int j = 1; j < N; j++) {if (obstacle[i][j]) {dp[i][j] = 0;} else {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}}cout << dp[M-1][N-1];return 0;
}

3.6 算法分析

  • 时间复杂度:O(M×N),与基础版本相同

  • 空间复杂度:O(M×N),需要存储障碍物信息和状态数组

  • 关键改进

    1. 起点障碍物特殊处理

    2. 边界条件需要检查障碍物

    3. 动态规划时跳过障碍物位置

四、动态规划优化技巧

4.1 空间优化

可以使用滚动数组将空间复杂度优化为 O(N):

vector<int> dp(N, 0);
dp[0] = 1;
for (int i = 0; i < M; i++) {for (int j = 0; j < N; j++) {if (obstacle[i][j]) {dp[j] = 0;} else if (j > 0) {dp[j] += dp[j-1];}}
}
cout << dp[N-1];

4.2 常见变种问题

  1. 最小路径和:求路径上数字和的最小值

  2. 存在负权值:使用不同的动态规划策略

  3. 四方向移动:增加向上和向左移动能力

  4. 概率问题:计算成功到达的概率

http://www.yidumall.com/news/98403.html

相关文章:

  • 黑龙江做网站长沙百度网站优化
  • 网站搭建与服务器配置百度怎么搜索网址打开网页
  • 苏州市高新区建设局网站搜索引擎优化服务公司哪家好
  • 攻击自己做的网站吗高端企业网站模板
  • 公司做个网站好还是做公众号好爱链网中可以进行链接买卖
  • 建设网站的公司汇总网站排名优化软件有哪些
  • 网站开发类型广州seo公司排名
  • 如何保存自己做的网站做外贸推广
  • 成都科技网站建设电话咨询可口可乐软文营销案例
  • 网站地图提交地址营销号
  • 全国最新的疫情广州seo黑帽培训
  • 代做ppt网站好云计算培训
  • 免费微信小程序官网seo怎么做优化
  • 设计一个网站要多少钱百度指数查询官方下载
  • 定制棺材网站看网站搜索什么关键词
  • 网页设计模板的网站如何开网站呢
  • 山东外贸网站建设是什么百度seo关键词怎么做
  • 带后台的网站开发运营成本青岛快速排名优化
  • wordpress表单提交 阿里云邮箱网络优化器
  • 做网站怎么实现鼠标经过图像千网推软文推广平台
  • 外国风格网站建设用途百度问答库
  • 外汇网站怎么做优化惠州网站排名提升
  • 如意宝魔方建站seo推广骗局
  • 网站建设海外推广 香港seo美式
  • 怎样把录的视频做一下传到网站深圳靠谱网站建设公司
  • b2b网站排名大全百度推广登录首页官网
  • 转播网站如何做网站发布
  • 易企秀网站怎么做轮播图福州网站优化
  • wordpress dux长沙网站优化价格
  • 安阳县政府网(安东新区)官网哪个合肥seo好