当前位置: 首页 > news >正文

u网站建设无锡seo网站排名

u网站建设,无锡seo网站排名,做网站维护的人叫啥,网站建设合作合同在做数据升维的时候,最常见的手段就是将已知维度进行相乘(或者自乘)来构建新的维度 使用 np.concatenate()进行简单的,幂次合并,注意数据合并的方向axis 1 数据可视化时,注意切片,因为数据升维…
  • 在做数据升维的时候,最常见的手段就是将已知维度进行相乘(或者自乘)来构建新的维度
    • 使用 np.concatenate()进行简单的,幂次合并,注意数据合并的方向axis = 1

    • 数据可视化时,注意切片,因为数据升维后,多了平方这一维

# 4、多项式升维 + 普通线性回归
X = np.concatenate([X,X**2],axis = 1)
  • 使用 PolynomialFeatures 进行 特征升维
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures()   # 使用PolynomialFeatures进行特征升维
poly.fit(X,y)
X = poly.transform(X)
  • 调整字体大小: plt.rcParams[ 'font.size' ] = 18
import matplotlib.pyplot as plt
plt.rcParams['font.size'] = 18


1.1、多项式回归基本概念

对于多项式回归来说主要是为了扩展线性回归算法来适应更广泛的数据集,比如我们数据集有两个维度 x_1, x_2​,那么用多元线性回归公式就是: \hat{y} = w_0 + w_1x_1 + w_2x_2,当我们使用二阶多项式升维的时候,数据集就从原来的 x_1, x_2 扩展成了 x_1, x_2, x_1^2, x_2^2, x_1x_2 。因此多元线性回归就得去多计算三个维度所对应的w值:\hat{y} = w_0 + w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_2^2 + w_5x_1x_2

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression# 1、创建数据,并进行可视化
X = np.linspace(-1,11,num = 100)
y = (X - 5)**2 + 3*X -12 + np.random.randn(100)
X = X.reshape(-1,1)
plt.scatter(X,y)# 2、创建预测数据
X_test = np.linspace(-2,12,num = 200).reshape(-1,1)# 3、不进行升维 + 普通线性回归
model_1 = LinearRegression()
model_1.fit(X,y)
y_test_1 = model_1.predict(X_test)
plt.plot(X_test,y_test_1,color = 'red')# 4、多项式升维 + 普通线性回归
X = np.concatenate([X,X**2],axis = 1)
model_2 = LinearRegression()
model_2.fit(X,y)
# 5、测试数据处理,并预测
X_test = np.concatenate([X_test,X_test**2],axis = 1)
y_test_2 = model_2.predict(X_test)# 6、数据可视化,切片操作
plt.plot(X_test[:,0],y_test_2,color = 'green')

1.2 使用PolynomialFeatures进行特征升维

import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import PolynomialFeatures,StandardScaler
from sklearn.linear_model import SGDRegressor# 1、创建数据,并进行可视化
X = np.linspace(-1,11,num = 100)
y = (X - 5)**2 + 3*X -12 + np.random.randn(100)
X = X.reshape(-1,1)
plt.scatter(X,y)# 3、使用PolynomialFeatures进行特征升维
poly = PolynomialFeatures()   # 特征升维
poly.fit(X,y)
X = poly.transform(X)
s = StandardScaler()    # 归一化
X = s.fit_transform(X)# 4、训练模型
model = SGDRegressor(penalty='l2',eta0 = 0.01)
model.fit(X,y)# 2、创建预测数据
X_test = np.linspace(-2,12,num = 200).reshape(-1,1)
X_test = poly.transform(X_test)      # 特征升维
X_test_norm = s.transform(X_test)    # 归一化
y_test = model.predict(X_test_norm)
plt.plot(X_test[:,1],y_test,color = 'green')

1.3 多项式预测

天猫双十一销量与年份的关系是多项式关系!假定,销量和年份之间关系是三次幂关系:

{\color{Red} f(x) = w_1x + w_2x^2 + w_3x^3 + b}

import numpy as np
from sklearn.linear_model import SGDRegressor
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
plt.figure(figsize=(12,9))# 1、创建数据,年份数据2009 ~ 2019
X = np.arange(2009,2020)
y = np.array([0.5,9.36,52,191,350,571,912,1207,1682,2135,2684])# 2、年份数据,均值移除,防止某一个特征列数据天然的数值太大而影响结果
X = X - X.mean()
X = X.reshape(-1,1)# 3、构建多项式特征,3次幂
poly = PolynomialFeatures(degree=3)
X = poly.fit_transform(X)
s = StandardScaler()
X_norm = s.fit_transform(X)# 4、创建模型
model = SGDRegressor(penalty='l2',eta0 = 0.5,max_iter = 5000)
model.fit(X_norm,y)# 5、数据预测
X_test = np.linspace(-5,6,100).reshape(-1,1)
X_test = poly.transform(X_test)
X_test_norm = s.transform(X_test)
y_test = model.predict(X_test_norm)# 6、数据可视化
plt.plot(X_test[:,1],y_test,color = 'green')
plt.bar(X[:,1],y)
plt.bar(6,y_test[-1],color = 'red')
plt.ylim(0,4096)
plt.text(6,y_test[-1] + 100,round(y_test[-1],1),ha = 'center')
_ = plt.xticks(np.arange(-5,7),np.arange(2009,2021))

 

http://www.yidumall.com/news/96412.html

相关文章:

  • 减肥药做网站营销电商培训机构哪家强
  • wordpress交易网站网页开发需要学什么
  • 网站做树状结构有什么作用百度号码认证平台
  • 青岛惠中建设监理有限公司网站搜什么关键词能搜到好片
  • dz网站如何搬家行业网站网址
  • 做慧聪网价格网站价格seo推广怎么样
  • 跨境商旅客户ppt百度网站关键词优化
  • 吉林省住房与建设厅网站佛山网站优化服务
  • 天津建设工程信息网专家申请题库成都网站seo报价
  • 凡科网建网站付费链接怎么做如何推广seo
  • 关于内网站建设的请示站长域名查询
  • 做视频网站需要什么条件广州seo网站排名
  • 帮别人做非法网站关键词排名监控
  • 关于做网站ppt百度sem是什么
  • 重庆建站公司网站模板seo课程培训视频
  • 深圳专业做网站的公司湖南今日新闻最新头条
  • 网站建设网上商城心得体会国际新闻今天
  • 自己做的个人网站无法备案百度竞价点击价格
  • 网页制作与网站建设报告郑州seo关键词
  • 向搜索引擎提交网站地图专门看网站的浏览器
  • 一个大网站需要多少钱seo优化网络公司排名
  • js做音乐网站夫唯seo
  • jsp新闻网站市场营销主要学什么
  • 一个网站做3个关键词够磁力搜索神器
  • 网站的引导页面是什么意思北京网站推广
  • 小游戏网站建设网站推广的基本手段有哪些
  • 网站搭建申请网络营销推广的渠道有哪些
  • 绿色主色调网站东莞企业网站设计公司
  • 动态效果酷炫的网站注册网站平台要多少钱
  • 怎样创建购物网站宁波seo外包推广