当前位置: 首页 > news >正文

阿里云主机做网站安装百度

阿里云主机做网站,安装百度,主流网站开发采用,python开发appTOP-K问题 TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大 比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等 对于Top-K问题,能想到的最简单直接的方式就是排序,但是…

TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大

比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。
举个例子:
有十亿个整形数据,我们的内存时4G,也就是102410241024*8个字节的空间,十亿个整形数据需要的是40亿个字节的空间,就占了内存的一半空间,这是不可行的

最佳的方式就是用堆来解决,基本思路如下:

  1. 用数据集合中前K个元素来建堆
    前k个最大的元素,则建小堆
    前k个最小的元素,则建大堆
  2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素,将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素

下面我们进行代码的实现:
首先我们生成1000个随机数,范围再十万以内,放入一个数组中:

srand(time(0));
int* a = (int*)malloc(sizeof(int) * 1000);
if (a == NULL)
{perror("malloc");return 0;
}
for (size_t i = 0; i < 1000; i++)
{a[i] = rand() % 100000;
}

然后我们随机将数组中的任意k个元素改为超过十万的数字,方便验证:

a[7] = 100000 + 1;
a[49] = 100000 + 2;
a[123] = 100000 + 3;
a[456] = 100000 + 4;
a[789] = 100000 + 5;

我们还要用到向下调整算法,以便于建堆:

void swap(int* p1, int* p2)
{int temp = *p1;*p1 = *p2;*p2 = temp;
}
void AdjustDown(int* a, int n, int parent)
{int child = (parent * 2) + 1;while (child < n){if (child + 1 < n && a[child + 1] < a[child]){child++;}if (a[child] < a[parent]){swap(&a[child], &a[parent]);parent=child;child = parent * 2 + 1;}else{break;}}
}

最后我们将a数组中的前k个元素插入到top_k函数的数组里,然后进行一次向下调整算法,将其调整为大堆,然后再用剩下的n-k个元素与堆顶元素进行比较,如果比他大进替换进堆,然后进行向下调整

void top_k(int* a, int n, int k)
{int i = 0;int* top = (int*)malloc(sizeof(int) * k);if (top == NULL){perror("malloc");return;}for (i = 0; i < k; i++){top[i] = a[i];}for (i = (k - 1 - 1) / 2; i >= 0; i--){AdjustDown(top, k, i);}for (i = k; i < 1000; i++){if (a[i] > top[0]){top[0] = a[i];AdjustDown(top, k, 0);}}

完整代码如下:

#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<assert.h>
void swap(int* p1, int* p2)
{int temp = *p1;*p1 = *p2;*p2 = temp;
}
void AdjustDown(int* a, int n, int parent)
{int child = (parent * 2) + 1;while (child < n){if (child + 1 < n && a[child + 1] < a[child]){child++;}if (a[child] < a[parent]){swap(&a[child], &a[parent]);parent=child;child = parent * 2 + 1;}else{break;}}
}
void top_k(int* a, int n, int k)
{int i = 0;int* top = (int*)malloc(sizeof(int) * k);if (top == NULL){perror("malloc");return;}for (i = 0; i < k; i++){top[i] = a[i];}for (i = (k - 1 - 1) / 2; i >= 0; i--){AdjustDown(top, k, i);}for (i = k; i < 1000; i++){if (a[i] > top[0]){top[0] = a[i];AdjustDown(top, k, 0);}}for (i = 0; i < k; i++){printf("%d ", top[i]);}free(top);
}
int main()
{srand(time(0));int* a = (int*)malloc(sizeof(int) * 1000);if (a == NULL){perror("malloc");return 0;}for (size_t i = 0; i < 1000; i++){a[i] = rand() % 100000;}a[7] = 100000 + 1;a[49] = 100000 + 2;a[123] = 100000 + 3;a[456] = 100000 + 4;a[789] = 100000 + 5;int k = 5;top_k(a, 1000, k);
}

向上调整算法和向下调整算法的时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):
在这里插入图片描述
我们令高度为h,节点个数n就等于2^(h)-1个
那么在向上调整算法中:
最坏情况下,最后一层的节点需要向上移动h-1次,依次类推,就得到总次数的表达式,然后再用错位相减法和n和h的关系就能求出时间复杂度f(n)了
在向下调整算法中:
最坏情况下,倒数第二层节点向下只移动一次,第一层最多移动h-1次

总结下来我们就会发现,向上调整算法中是多节点乘多层数的关系,而向下调整算法则是多节点乘少层数的关系,我们进行比较就会发现其实向下调整算法的效率更高,所以在平常的排序和建堆中我们 最常用的还是向下调整算法
在这里插入图片描述
向上调整算法的时间复杂度为:

n*log(n)

向下调整算法的时间复杂度为:

log(n)

因此,向下调整算法的效率是远大于向上调整算法的!
好了,今天的分享到这里就结束了,谢谢大家的支持!

http://www.yidumall.com/news/9638.html

相关文章:

  • 澄迈住房和城乡建设局网站个人网站搭建
  • 设计公司网站详情怎么把网站排名优化
  • wordpress 一键生成如何提高网站seo排名
  • 网络推广网站公司推荐怎样做一个网页
  • 苏州网站营销公司今日最新消息新闻
  • 成都建设规划局网站首页电商运营培训班
  • 网站手机网站怎么建立营销
  • 有没有做家纺类的网站手机优化大师怎么退款
  • wordpress find重庆seo搜索引擎优化优与略
  • 找工程去哪个网站品牌营销推广要怎么做
  • 自己怎么做网站赚钱吗百度搜索风云榜排行榜
  • 摄影网站需求分析怎么在网上推广产品
  • 全网营销是什么seo页面链接优化
  • 英文网站后台维护2024年最新时政热点
  • 网站推广团队搜索引擎营销特点是什么
  • 新浪sae 安装wordpress网址seo优化排名
  • wordpress 插件 手机版广州抖音seo
  • 网站筛选功能优化设计一年级下册数学答案
  • 网站制作需求分析深圳市网络品牌推广
  • 裤子seo关键词seo 优化公司
  • 保山网站建设百度快照怎么没有了
  • 如何设置网站名字企业网络推广的方法
  • 鄞州网站制作百度网盘app下载安装 官方下载
  • 网站建设初期工作方案免费做网站自助建站
  • 苏州免费网站制作网站优化公司
  • 做网站公司的前景seo优化方法
  • 可以做兼职翻译的网站软件发布网
  • 网站广告psd广东seo推广贵不贵
  • 做暧免费网站百度指数支持数据下载吗
  • 快站wordpress2022近期重大新闻事件10条