当前位置: 首页 > news >正文

中铁北部湾工程建设有限公司网站太原seo网站优化

中铁北部湾工程建设有限公司网站,太原seo网站优化,微信网站建设咨询,恋爱话术小程序搭建1 pytorch保存和加载模型的三种方法 PyTorch提供了三种种方式来保存和加载模型,在这三种方式中,加载模型的代码和保存模型的代码必须相匹配,才能保证模型的加载成功。通常情况下,使用第一种方式(保存和加载模型状态字…

1 pytorch保存和加载模型的三种方法

PyTorch提供了三种种方式来保存和加载模型,在这三种方式中,加载模型的代码和保存模型的代码必须相匹配,才能保证模型的加载成功。通常情况下,使用第一种方式(保存和加载模型状态字典)更加常见,因为它更轻量且不依赖于特定的模型类。

1.1 仅保存和加载模型参数

1.1.1 保存模型参数

import torch
import torch.nn as nnmodel = nn.Sequential(nn.Linear(128, 16), nn.ReLU(), nn.Linear(16, 1))# 保存整个模型
torch.save(model.state_dict(), 'sample_model.pt')

1.1.2 加载模型参数

import torch
import torch.nn as nn# 下载模型参数 并放到模型中
loaded_model = nn.Sequential(nn.Linear(128, 16), nn.ReLU(), nn.Linear(16, 1))
loaded_model.load_state_dict(torch.load('sample_model.pt'))
print(loaded_model)

显示如下:

Sequential((0): Linear(in_features=128, out_features=16, bias=True)(1): ReLU()(2): Linear(in_features=16, out_features=1, bias=True)
)

net.state_dict(),在PyTorch中,Module 的可学习参数 (即权重和偏差),模块模型包含在参数中 (通过 model.parameters() 访问)。state_dict 是一个从参数名称隐射到参数 Tesnor 的有序字典对象。只有具有可学习参数的层(卷积层、线性层等) 才有 state_dict 中的条目。

1.2 保存和加载整个模型

1.2.1 保存整个模型

import torch
import torch.nn as nnnet = nn.Sequential(nn.Linear(128, 16), nn.ReLU(), nn.Linear(16, 1))# 保存整个模型,包含模型结构和参数
torch.save(net, 'sample_model.pt')

1.2.2  加载整个模型

import torch
import torch.nn as nn# 加载整个模型,包含模型结构和参数
loaded_model = torch.load('sample_model.pt')
print(loaded_model)

显示如下:

Sequential((0): Linear(in_features=128, out_features=16, bias=True)(1): ReLU()(2): Linear(in_features=16, out_features=1, bias=True)
)

1.3 导出和加载ONNX格式模型

1.3.1 保存模型

import torch
import torch.nn as nnmodel = nn.Sequential(nn.Linear(128, 16), nn.ReLU(), nn.Linear(16, 1))input_sample = torch.randn(16, 128)  # 提供一个输入样本作为示例
torch.onnx.export(model, input_sample, 'sample_model.onnx')

1.3.2 加载模型

import torch
import torch.nn as nn
import onnx
import onnxruntimeloaded_model = onnx.load('sample_model.onnx')
session = onnxruntime.InferenceSession('sample_model.onnx')
print(session)

2 模型保存与加载使用的函数

2.1 保存模型函数torch.save

将对象序列化保存到磁盘中,该方法原理是基于python中的pickle来序列化,各种Models,tensors,dictionaries 都可以使用该方法保存。保存的模型文件名可以是.pth, .pt, .pkl

def save(obj: object,f: FILE_LIKE,pickle_module: Any = pickle,pickle_protocol: int = DEFAULT_PROTOCOL,_use_new_zipfile_serialization: bool = True
) -> None:
  • obj:保存的对象
  • f:一个类似文件的对象(必须实现写入和刷新)或字符串或操作系统。包含文件名的类似路径对象
  • pickle_module:用于挑选元数据和对象的模块
  • pickle_protocol:可以指定以覆盖默认协议

2.2 加载模型函数torch.load

def load(f: FILE_LIKE,map_location: MAP_LOCATION = None,pickle_module: Any = None,*,weights_only: bool = False,**pickle_load_args: Any
) -> Any:
  • f:类文件对象 (返回文件描述符)或一个保存文件名的字符串
  • map_location:一个函数或字典规定如何映射存储设备,torch.device对象
  • pickle_module:用于 unpickling 元数据和对象的模块 (必须匹配序列化文件时的 pickle_module )

2.3 加载模型参数torch.nn.Module.load_state_dict

序列化 (Serialization)是将对象的状态信息转换为可以存储或传输的形式的过程。 在序列化期间,对象将其当前状态写入到临时或持久性存储区。以后,可以通过从存储区中读取或反序列化对象的状态,重新创建该对象。

def load_state_dict(self, state_dict: 'OrderedDict[str, Tensor]',strict: bool = True):
  • state_dict:保存 parameters 和 persistent buffers 的字典
  • strict:可选,bool型。state_dict 中的 key 是否和 model.state_dict() 返回的 key 一致。

2.4 状态字典state_dict

函数作用是“获取优化器当前状态信息字典”,在神经网络中模型上训练出来的模型参数,也就是权重和偏置值。在Pytorch中,定义网络模型是通过继承torch.nn.Module来实现的。其网络模型中包含可学习的参数(weights, bias, 和一些登记的缓存如batchnorm’s running_mean 等)。模型内部的可学习参数可通过两种方式进行调用:

  • 通过model.parameters()这个生成器来访问所有参数。
  • 通过model.state_dict()来为每一层和它的参数建立一个映射关系并存储在字典中,其键值由每个网络层和其对应的参数张量构成。
def state_dict(self, destination=None, prefix='', keep_vars=False):

除模型外,优化器对象(torch.optim)同样也有一个状态字典,包含的优化器状态信息以及使用的超参数。由于状态字典属于Python 字典,因此对 PyTorch 模型和优化器的保存、更新、替换、恢复等操作都比较便捷。

3 指定map_location加载模型

采用仅加载模型参数的方式,指定设备类型进行模型加载,代码如下:

model_path = '/opt/sample_model.pth'device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
map_location = torch.device(device)model.load_state_dict(torch.load(self.model_path, map_location=self.map_location))
http://www.yidumall.com/news/92837.html

相关文章:

  • 聊城质量最好网站建设阿里seo排名优化软件
  • 做网站品牌可视化网页制作工具
  • 南宁网站开发价格什么是营销模式
  • 如何看网站开发语言如何做推广推广技巧
  • 网络工程是什么seo的理解
  • 如何自己制作首页网站线上培训课程
  • 沈阳建设工程信息网中项目管理人员都填哪些人整站排名优化品牌
  • 坪山网站建设行业现状福建seo优化
  • 外贸企业招聘台州网站seo
  • 外贸营销型网站制作百度关键词优化方法
  • 最优的网站建设nba最新资讯
  • 青岛营销型网站推广网络营销顾问是做什么的
  • 网站备案服务商查询外贸网站优化推广
  • 网站后台如何更换在线qq咨询代码nba排名
  • 广告创意制作太原搜索引擎优化招聘信息
  • react.js 做网站好吗百度网盘客服在线咨询
  • 做网站的后台开发需要会些什么有什么好的推广平台
  • 做网站可以在哪儿接活英文谷歌seo
  • blog建设网站南昌seo排名外包
  • 网站建设与网络编辑课程心得夸克搜索引擎入口
  • 电商网站推广方法珠海优化seo
  • 手机网站设计制作公司国家优化防控措施
  • 哪个网站用div做的好长春网站制作企业
  • 国外html5模板网站化妆品推广软文
  • 手机如何创建公众号seo现在还有前景吗
  • 做配资网站多少钱google官方入口
  • 广告公司网站首页深圳百度总部
  • 深圳个性化建网站服务商seo薪酬水平
  • 昆明云南微网站制作专业网站seo推广
  • 做设计兼职的网站有哪些天津百度推广开户