当前位置: 首页 > news >正文

校园网站建设结论上海企业优化

校园网站建设结论,上海企业优化,国家高新技术企业所得税税率,网络营销公司都做什么的题目描述 有重复字符串的排列组合。编写一种方法,计算某字符串的所有排列组合。 示例1: 输入:S “qqe” 输出:[“eqq”,“qeq”,“qqe”] 示例2: 输入:S “ab” 输出:[“ab”, “ba”] 提示: 字符都是英文字母。…

题目描述

有重复字符串的排列组合。编写一种方法,计算某字符串的所有排列组合。

示例1:

  • 输入:S = “qqe”
    输出:[“eqq”,“qeq”,“qqe”]

示例2:

  • 输入:S = “ab”
    输出:[“ab”, “ba”]

提示:

  • 字符都是英文字母。
    字符串长度在[1, 9]之间。

解题思路与代码

这道题一看还是一道关于排列的问题。只要有关排列的问题,我们都可以通过回溯法去解决。

方法一: 回溯法 + 使用unordered_set数据结构进行去重

如果没有做过《程序员面试金典(第6版)》面试题 08.07. 无重复字符串的排列组合(回溯算法,全排列问题)C++
这道题的小伙伴,先去做一下这道题。

这道题与上面链接的那道题非常像,只不过,这里字符串中的字符开始出现有重复的字符了。所以我们做这道题的时候就需要去重。我们直接用unordered_set这种数据结构去去一下重好了。代码与上道题的代码没什么区别,这里给出这道题的代码:

class Solution {
public:vector<string> permutation(string S) {unordered_set<string> result;backtracking(S,result,0);vector<string> vec;for(auto a : result){vec.push_back(a);}return vec;}void backtracking(string& S,unordered_set<string>& result,int begin){if(begin == S.size()){result.insert(S);return;}for(int i = begin;i < S.size(); ++i){swap(S[i],S[begin]);backtracking(S,result,begin+1);swap(S[i],S[begin]);}}
};

在这里插入图片描述

复杂度分析

时间复杂度:

  • 这段代码的时间复杂度主要取决于两个部分:backtracking 函数的执行次数以及将结果从 unordered_set 转移到 vector 的时间。

  • backtracking 函数的执行次数:对于长度为 n 的字符串,我们需要对每个字符进行排列组合,这会产生 n! 个排列。在回溯算法中,我们会遍历整个排列空间。因此,backtracking 函数的执行次数为 O(n!)。

  • 将结果从 unordered_set 转移到 vector:result 中最多有 n! 个元素。遍历 result 并将其中的元素插入 vector 的时间复杂度为 O(n!)。

  • 综合这两部分,总的时间复杂度为 O(n!)。

空间复杂度:

  • 空间复杂度主要取决于三个方面:递归调用栈的深度、结果存储在 unordered_set 中所占用的空间,以及结果向量 vec 所占用的空间。

  • 递归调用栈的深度:在回溯算法中,递归调用栈的深度等于字符串的长度 n。因此,递归调用栈的空间复杂度为 O(n)。

  • 结果存储在 unordered_set 中所占用的空间:result 中最多有 n! 个元素,每个元素是一个长度为 n 的字符串。因此,结果存储在 unordered_set 中所占用的空间复杂度为 O(n * n!)。

  • 结果向量 vec 所占用的空间:vec 中有 n! 个元素,每个元素是一个长度为 n 的字符串。因此,结果向量所占用的空间复杂度为 O(n * n!)。

  • 由于这三部分空间是算法使用的空间,因此总的空间复杂度为这三者之和,即 O(n) + O(n * n!) + O(n * n!) = O(2 * n * n!) = O(n * n!)。

  • 所以,这段代码的时间复杂度为 O(n!),空间复杂度为 O(n * n!)。

方法二 :对代码一的方法进行优化。

在这道题里,因为可能有重复的字符,方法一是直接用unordered_set在结果处进行去重,重复的答案不会被存进集合中,但这种方法不会减少递归的此时。那有没有一种方法,可以在做交换的时候就进行剪枝操作而进行去重呢,而去减少递归的次数呢?

答案当然是有,我们可以通过一个unordered_set去记住在当前的这一层循环里出现过哪些字符,如果出现了重复的字符,那我们就跳过这次交换,直接进入下一次交换。这样也同样达到了去重的目的,也减少了递归的次数。但是不好的一点是增加了内存的存储空间,因为每一层递归都要创建一个unordered_set去存储出现过的字符。

具体代码如下:

class Solution {
public:vector<string> permutation(string S) {vector<string> result;backtracking(S, result, 0);return result;}void backtracking(string &S, vector<string> &result, int begin) {if (begin == S.size()) {result.push_back(S);return;}unordered_set<char> used_chars;  // 用于存储已经在当前位置出现过的字符for (int i = begin; i < S.size(); ++i) {if (used_chars.find(S[i]) != used_chars.end()) {continue;  // 如果当前字符已经在当前位置出现过,则跳过这次交换}used_chars.insert(S[i]);  // 记录当前字符swap(S[i], S[begin]);backtracking(S, result, begin + 1);swap(S[i], S[begin]);}}
};

在这里插入图片描述

复杂度分析

通过这种剪枝策略,我们避免了搜索重复的路径,从而降低了时间复杂度。然而,在最坏情况下(如所有字符都不同),算法的时间复杂度仍然是 O(n!)。空间复杂度与之前的分析相同,为 O(n * n!)。虽然这种剪枝策略不能在理论上改进时间复杂度,但在有重复字符的情况下,实际运行效率会有所提升,但是同样每一层都会多创建出一个unordered_set去存储至多n个字符,会多消耗一部分的内存空间。

方法三,对代码二的再次优化!

这一次我们写了一个hasDuplicate函数来检查有没有重复出现的字符。这样就不会使用额外的内存空间去存储字符了。
因为begin的值肯定是要比i小的,因为i会递增,而begin不会,从而我们在这个函数中,去递增begin,看看有没有会出现与i相当的字符,如果出现了,就说明有重复,就要跳过这个循环!

class Solution {
public:vector<string> permutation(string S) {vector<string> result;backtracking(S,result,0);return result;}void backtracking(string& S,vector<string>& result,int begin){if(begin == S.size()) {result.push_back(S);return;}for(int i = begin; i < S.size(); ++i){if(hasDuplicate(S,begin,i)) continue;swap(S[i],S[begin]);backtracking(S,result,begin+1);swap(S[i],S[begin]);}}bool hasDuplicate(string& S, int begin,int end){for(int i = begin; i < end; ++i)if(S[i] == S[end]) return true;return false;}
};

在这里插入图片描述

复杂度分析

时间复杂度:

  • permutation 函数的时间复杂度主要取决于 backtracking 函数。在最坏情况下,回溯算法将尝试所有可能的排列组合,即 n!。
  • hasDuplicate 函数的时间复杂度为 O(n)(在 for 循环内部进行比较)。
  • backtracking 函数中调用了 hasDuplicate 函数,所以在最坏情况下,总时间复杂度为 O(n! * n)。

空间复杂度:

  • 结果向量 result 的空间复杂度为 O(n!),因为它需要存储所有排列组合。
  • 递归栈的空间复杂度为 O(n),因为最深的递归调用次数等于字符串的长度。
  • 总的空间复杂度为 O(n! + n)。

综上所述,该算法的时间复杂度为 O(n! * n),空间复杂度为 O(n! + n)。

虽然说,代码1,2,3的时间复杂度都是O(n!),但是在代码三的实际时间复杂度要比1,2快了不少。

总结

这道题不算一道特别难的题。但是呢,剪枝和去重,才是这道题的重中之重。写出简洁并且高效的回溯算法并不容易。我们还得去多学习多总结!

http://www.yidumall.com/news/91511.html

相关文章:

  • 中国专门做生鲜的网站友情连接出售
  • 有哪些专门做创意门头的网站临沂seo优化
  • jsp网站首页那栏怎么做免费网站流量统计工具
  • 做盗版视频网站违法吗头条搜索是百度引擎吗
  • 在线房产网太原seo快速排名怎么样
  • 商城和营销型网站建设黑马it培训班出来现状
  • 如何上传网页到网站我想接app注册推广单
  • 主题网站建设平台爱客crm
  • 赣州网站建设专家深圳网络营销运营
  • 做网站一定要有公司吗搜索引擎平台有哪些
  • 德国服务器网站seo还能赚钱吗
  • 机械产品做那几个网站好最有效的推广学校的方式
  • 图片生成二维码在线制作seo上海优化
  • 网站建设 b2b北京排名seo
  • 网站建设系统镇江网站建设推广
  • 吴江开发区建设局网站短视频seo营销
  • 手机网站按那个尺寸做企业文化经典句子
  • 成都网站建设优化网络营销策略方案
  • 社区建立网站刚出来的新产品怎么推
  • 免费网站建设公司百度推广登录平台官网
  • 洛阳网站建设内容北京网络网站推广
  • 白云区做网站太原seo外包公司
  • 官方网站建设广告投放网
  • 明星粉丝网站怎么做义乌百度广告公司
  • 服务好的微网站建设百度一下首页版
  • 做网站建设公司网站查询平台
  • 网页界面模板设计seo外链建设的方法
  • iis wordpress url重写杭州seo排名
  • 建站行业市场百度推广如何代理加盟
  • 伪装学渣无极网站济南seo外包服务