当前位置: 首页 > news >正文

东莞建网站网站推广优化流程

东莞建网站,网站推广优化流程,网站建设一般多少钱要如何选择,做网站用eclipse吗scikit-learn库中提供了包括分类、回归、聚类、降维等多种机器学习任务所需的常用数据集,方便进行实验和研究,它们主要被封装在sklearn.datasets中,本文对其中一些常用的数据集进行简单的介绍。 1.Iris(鸢尾花)数据集…

scikit-learn库中提供了包括分类、回归、聚类、降维等多种机器学习任务所需的常用数据集,方便进行实验和研究,它们主要被封装在sklearn.datasets中,本文对其中一些常用的数据集进行简单的介绍。

1.Iris(鸢尾花)数据集

该数据集包含150个鸢尾花样本,分为3个品种,每个品种50个样本。每个样本包含4个特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度。目的是使用这4个特征来对鸢尾花进行分类。scikit-learn中该数据集主要封装在sklearn.datasets.load_iris()中,使用方法如下:

from sklearn.datasets import load_iris# 加载数据集
iris = load_iris()# 打印数据集的描述
print(iris.DESCR)# 打印特征名
print(iris.feature_names)# 打印标签类别
print(iris.target_names)# 获取特征矩阵和目标向量
X = iris.data
y = iris.target

在上面的代码中,load_iris() 方法返回一个包含Iris数据集的对象 iris 。可以通过 iris.DESCR、iris.feature_names、iris.target_names 属性打印出数据集的描述、特征名、标签类别。然后,我们可以使用 iris.data 属性获取特征矩阵,使用 iris.target 属性获取标签向量。特征矩阵 X 是一个包含150个样本和4个特征的二维数组,目标向量 y 是一个包含150个元素的一维数组,每个元素表示对应样本的类别。

2.Wine(葡萄酒)数据集

Wine数据集也是一个分类问题的数据集,包含了三个葡萄酒品种(class)的13种化学特征,一共有178个样本。这个数据集是由美国加州大学欧文分校(UCI)提供的,最初是为了研究酒的化学成分和葡萄酒品种之间的关系而构建的。

Wine数据集中的三个葡萄酒品种分别是:

  • Class 1: 59个样本

  • Class 2: 71个样本

  • Class 3: 48个样本

13个化学特征分别是:

  • Alcohol(酒精)

  • Malic acid(苹果酸)

  • Ash(灰分)

  • Alcalinity of ash(灰的碱度)

  • Magnesium(镁)

  • Total phenols(总酚类化合物)

  • Flavanoids(类黄酮)

  • Nonflavanoid phenols(非类黄酮酚)

  • Proanthocyanins(原花青素)

  • Color intensity(颜色强度)

  • Hue(色调)

  • OD280/OD315 of diluted wines(稀释葡萄酒的OD280/OD315比值)

  • Proline(脯氨酸)

Wine数据集使用方法和鸢尾花数据集是类似的:

from sklearn.datasets import load_winewine = load_wine()
X, y = wine.data, wine.target

其中,X代表数据集中的13个特征,y代表数据集中的三个葡萄酒品种(class)。

3.Boston(波士顿房价)数据集

Boston数据集则是一个回归问题的经典数据集,包含了美国波士顿地区房屋的14个特征,一共有506个样本。这个数据集同样是由美国加州大学欧文分校(UCI)提供的,我们通常用来研究房屋价格和房屋特征之间的关系。

Boston数据集中的14个特征分别是:

  • CRIM:城镇人均犯罪率

  • ZN:占地面积超过25000平方英尺的住宅用地比例

  • INDUS:城镇非零售业务占地面积的比例

  • CHAS:查尔斯河虚拟变量(如果河流边界,则为1;否则为0)

  • NOX:一氧化氮浓度(每千万分之一)

  • RM:住宅平均房间数

  • AGE:1940年之前建造的自用房屋的比例

  • DIS:到波士顿五个就业中心的加权距离

  • RAD:放射性公路的可达性指数

  • TAX:每10,000美元的全值财产税率

  • PTRATIO:城镇师生比例

  • B:1000(Bk - 0.63)^ 2其中Bk是城镇黑人的比例

  • LSTAT:人口中地位低下者的百分比

  • MEDV:自住房屋房价中位数,以千美元计

该数据集使用方法如下:

from sklearn.datasets import load_bostonboston = load_boston()
X, y = boston.data, boston.target

其中,X代表数据集中的14个特征,y代表数据集中的自住房屋房价中位数的目标变量。

4.digits(手写数字)数据集

Digits数据集是一个手写数字识别数据集,它包含了1797张8x8像素的数字图像。每张图像都被转换为64维的特征向量,每个特征表示图像中的一个像素点。每张图像都被标记为0到9中的一个数字,表示图像所代表的数字。这个数据集非常适合用于机器学习中的图像分类问题。

在sklearn中,Digits数据集可以通过以下代码进行加载:

from sklearn.datasets import load_digitsdigits = load_digits()

按上述步骤执行完之后,digits对象同样包含两个主要属性:data和target。digits.data保存的是特征矩阵,它是一个1797x64的数组,每一行代表一张图像的特征向量。标签保存在digits.target中,它是一个长度为1797的一维数组,每个元素代表相应图像的数字标签。我们使用类似的方法可以导出特征和标签:

X, y = boston.data, boston.target
http://www.yidumall.com/news/91101.html

相关文章:

  • 用自己电脑做主机做网站推广页面
  • 网站开发技术路线怎么自己搭建网站
  • 学代码的网站关键词推广系统
  • 只做公司网站方案关键词代发排名首页
  • wordpress不能视频360优化大师旧版本
  • 如何将百度云做成网站文件服务器免费广告
  • 做排行榜的网站知乎一站传媒seo优化
  • 建个网站需要多少钱?建网站要多少钱石家庄房价
  • 织梦大气婚纱影楼网站源码优质的seo快速排名优化
  • 北京协会网站建设青岛网站建设有限公司
  • 高端网站源码百度入口网址
  • 深圳珠宝品牌网站设计云盘搜
  • 高端网站建设的网站公司网站如何制作设计
  • 在线做原型的网站seo运营专员
  • 做网站购买服务器北京seo外包 靠谱
  • 武汉app网站建设国外免费建站网站搭建
  • java做面试题的网站当日网站收录查询统计
  • 网站不备案支付宝接口爱站网关键词怎么挖掘
  • 专业网站建设服务包括哪些上海seo优化bwyseo
  • 在线电影网站建设宁波seo推广费用
  • 电子商务网站建设如何实施seo草根博客
  • 佛山市做网站的百度一下你就知道了 官网
  • 建设网站的详细步骤天津百度推广中心
  • 成都双流兴城建设投资有限公司网站aso优化怎么做
  • 山东做网站公司有哪些学电脑在哪里报名
  • 天津网站建设制作系统网站推广的目的
  • 深圳规模较大的网站建设公司软件测试培训机构哪家好
  • 国内logo设计网站咸阳seo公司
  • 网站设计公司那个好网上国网app推广
  • 地方政府网站建设怎么做网站主页