当前位置: 首页 > news >正文

怎么建网站新手入门百度小说风云榜

怎么建网站新手入门,百度小说风云榜,网站用excel做数据库,郑州市城市建设委员会网站1、self-attention 1.1、self-attention结构图 上图是 Self-Attention 的结构,在计算的时候需要用到矩阵 Q(查询), K(键值), V(值)。在实际中,Self-Attention 接收的是输入(单词的表示向量 x组成的矩阵 X) 或者上一个 Encoder block 的输出。而 Q, K, V…

1、self-attention

1.1、self-attention结构图

上图是 Self-Attention 的结构,在计算的时候需要用到矩阵 Q(查询), K(键值), V(值)。在实际中,Self-Attention 接收的是输入(单词的表示向量 x组成的矩阵 X) 或者上一个 Encoder block 的输出。而 QK正是通过 Self-Attention 的输入进行线性变换得到的。

1.2 Q,K,V的计算

Self-Attention 的输入用矩阵 X进行表示,则可以使用线性变阵矩阵 WQWKWV 计算得到 QKV。计算如下图所示,注意 X, Q, K, V每一行都表示一个单词

 3.3 Self-Attention 的输出

得到矩阵 QKV之后就可以计算出 Self-Attention 的输出了,计算的公式如下: 

公式中计算矩阵 Q和 K 每一行向量的内积,为了防止内积过大,因此除以 dk 的平方根。乘以 K 的转置后,得到的矩阵行列数都为 n,n 为句子单词数,这个矩阵可以表示单词之间的 attention 强度。下图为 乘以 的转置,1234 表示的是句子中的单词。

得到 QK^{T} 之后,使用 Softmax 计算每一个单词对于其他单词的 attention 系数,公式中的 Softmax 是对矩阵的每一行进行 Softmax,即每一行的和都变为 1。

对矩阵每一行进行softmax
​​​​​

 

得到 Softmax 矩阵之后可以和 V相乘,得到最终的输出 Z

self-attention输出

 上图中 Softmax 矩阵的第 1 行表示单词 1 与其他所有单词的 attention 系数,最终单词 1 的输出 Z1 等于所有单词 i 的值 Vi 根据 attention 系数的比例加在一起得到,如下图所示:

Zi的计算方法

class Attention(nn.Module):def __init__(self, input_n:int,hidden_n:int):super().__init__()self.hidden_n = hidden_nself.input_n=input_nself.W_q = torch.nn.Linear(input_n, hidden_n)self.W_k = torch.nn.Linear(input_n, hidden_n)self.W_v = torch.nn.Linear(input_n, hidden_n)def forward(self, Q, K, V, mask=None):Q = self.W_q(Q)K = self.W_k(K)V = self.W_v(V)attention_scores = torch.matmul(Q, K.transpose(-2, -1))attention_weights = softmax(attention_scores)output = torch.matmul(attention_weights, V)return output

2、multi-head attention

       

从上图可以看到 Multi-Head Attention 包含多个 Self-Attention 层,首先将输入 X分别传递到 h 个不同的 Self-Attention 中,计算得到 h 个输出矩阵 Z。下图是 h=8 时候的情况,此时会得到 8 个输出矩阵 Z

多个self-attention

 得到 8 个输出矩阵 Z1 到 Z8 之后,Multi-Head Attention 将它们拼接在一起 (Concat),然后传入一个 Linear层,得到 Multi-Head Attention 最终的输出 Z

Multi-Head Attention的输出

 可以看到 Multi-Head Attention 输出的矩阵 Z与其输入的矩阵 X 的维度是一样的。

class MultiHeadAttention(nn.Module):def __init__(self,hidden_n:int, h:int = 2):"""hidden_n: hidden dimensionh: number of heads"""super().__init__()embed_size=hidden_nheads=hself.embed_size = embed_sizeself.heads = heads# 每个head的处理的特征个数self.head_dim = embed_size // heads# 如果不能整除就报错assert (self.head_dim * self.heads == self.embed_size), 'embed_size should be divided by heads'# 三个全连接分别计算qkvself.values = nn.Linear(self.head_dim, self.head_dim, bias=False)self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)# 输出层self.fc_out = nn.Linear(self.head_dim * self.heads, embed_size)def forward(self, Q, K, V, mask=None):query,values,keys=Q,K,VN = query.shape[0]  # batch# 获取每个句子有多少个单词value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]# 维度调整 [b,seq_len,embed_size] ==> [b,seq_len,heads,head_dim]values = values.reshape(N, value_len, self.heads, self.head_dim)keys = keys.reshape(N, key_len, self.heads, self.head_dim)queries = query.reshape(N, query_len, self.heads, self.head_dim)# 对原始输入数据计算q、k、vvalues = self.values(values)keys = self.keys(keys)queries = self.queries(queries)# 爱因斯坦简记法,用于张量矩阵运算,q和k的转置矩阵相乘# queries.shape = [N, query_len, self.heads, self.head_dim]# keys.shape = [N, keys_len, self.heads, self.head_dim]# energy.shape = [N, heads, query_len, keys_len]energy = torch.einsum('nqhd, nkhd -> nhqk', [queries, keys])# 是否使用mask遮挡t时刻以后的所有q、kif mask is not None:# 将mask中所有为0的位置的元素,在energy中对应位置都置为 -1*10^10energy = energy.masked_fill(mask==0, torch.tensor(-1e10))# 根据公式计算attention, 在最后一个维度上计算softmaxattention = torch.softmax(energy/(self.embed_size**(1/2)), dim=3)# 爱因斯坦简记法矩阵元素,其中query_len == keys_len == value_len# attention.shape = [N, heads, query_len, keys_len]# values.shape = [N, value_len, heads, head_dim]# out.shape = [N, query_len, heads, head_dim]out = torch.einsum('nhql, nlhd -> nqhd', [attention, values])# 维度调整 [N, query_len, heads, head_dim] ==> [N, query_len, heads*head_dim]out = out.reshape(N, query_len, self.heads*self.head_dim)# 全连接,shape不变output = self.fc_out(out)return output

3、transformer block

3.1 encoder blockg构架图

 上图红色部分是 Transformer 的 Encoder block 结构,可以看到是由 Multi-Head Attention, Add & Norm, Feed Forward, Add & Norm 组成的。刚刚已经了解了 Multi-Head Attention 的计算过程,现在了解一下 Add & Norm 和 Feed Forward 部分。

3.2 Add & Norm

Add & Norm 层由 Add 和 Norm 两部分组成,其计算公式如下:

 其中 X表示 Multi-Head Attention 或者 Feed Forward 的输入,MultiHeadAttention(X) 和 FeedForward(X) 表示输出 (输出与输入 X 维度是一样的,所以可以相加)。

Add指 X+MultiHeadAttention(X),是一种残差连接,通常用于解决多层网络训练的问题,可以让网络只关注当前差异的部分,在 ResNet 中经常用到。

残差连接

 Norm指 Layer Normalization,通常用于 RNN 结构,Layer Normalization 会将每一层神经元的输入都转成均值方差都一样的,这样可以加快收敛。

3.3 Feed Forward

Feed Forward 层比较简单,是一个两层的全连接层,第一层的激活函数为 Relu,第二层不使用激活函数,对应的公式如下。

Feed Forward

 X是输入,Feed Forward 最终得到的输出矩阵的维度与 X 一致。

class TransformerBlock(nn.Module):def __init__(self, hidden_n:int, h:int = 2):"""hidden_n: hidden dimensionh: number of heads"""super().__init__()embed_size=hidden_nheads=h# 实例化自注意力模块self.attention =MultiHeadAttention (embed_size, heads)# muti_head之后的layernormself.norm1 = nn.LayerNorm(embed_size)# FFN之后的layernormself.norm2 = nn.LayerNorm(embed_size)forward_expansion=1dropout=0.2# 构建FFN前馈型神经网络self.feed_forward = nn.Sequential(# 第一个全连接层上升特征个数nn.Linear(embed_size, embed_size * forward_expansion),# relu激活nn.ReLU(),# 第二个全连接下降特征个数nn.Linear(embed_size * forward_expansion, embed_size))# dropout层随机杀死神经元self.dropout = nn.Dropout(dropout)def forward(self, value, key, query, mask=None):attention = self.attention(value, key, query, mask)# 输入和输出做残差连接x = query + attention# layernorm标准化x = self.norm1(x)# dropoutx = self.dropout(x)# FFNffn = self.feed_forward(x)# 残差连接输入和输出forward = ffn + x# layernorm + dropoutout = self.dropout(self.norm2(forward))return out

transformer

import torch.nn as nn
class Transformer(nn.Module):def __init__(self,vocab_size, emb_n: int, hidden_n: int, n:int =3, h:int =2):"""emb_n: number of token embeddingshidden_n: hidden dimensionn: number of layersh: number of heads per layer"""embedding_dim=emb_nsuper().__init__()self.embedding_dim = embedding_dimself.embeddings = nn.Embedding(vocab_size,embedding_dim)self.layers=nn.ModuleList([TransformerBlock(hidden_n,h) for _ in range(n)    ])def forward(self,x):N,seq_len=x.shapeout=self.embeddings(x)for layer in self.layers:out=layer(out,out,out)return out

http://www.yidumall.com/news/86113.html

相关文章:

  • 大数据营销 全网推广成都seo服务
  • 网站keywords多少字c盘优化大师
  • 做爰全过程免费网站的视频教程好看的网站设计
  • 网站建设和维护需要学的东西想做网络推广的公司
  • 做网页的网站什么是论坛推广
  • 网站设计的分辨率站长工具网站查询
  • wordpress七牛云镜像百度搜索网站优化
  • 秦皇岛哪家公司网站建设好找合作项目app平台
  • 淘宝上面的网站建设是靠谱婚恋网站排名前10
  • 东莞自己建网站哪家强线上营销推广方案模板
  • 做搜索引擎的网站有哪些企业员工培训总结
  • 为国外客户做网站建设百度如何推广产品
  • wamp环境下做网站免费的关键词挖掘工具
  • 有什么做分销的几个网站湖北seo公司
  • 在哪个网站做跨境电商百度号码认证平台个人号码申诉
  • 手机自适应网站源码长沙seo 优化选智投未来no1
  • 安阳网站建设报价浏览器下载
  • wordpress调用新版媒体库北京seo优化排名推广
  • 临清网站开发网站排名掉了怎么恢复
  • 一个人做网站设计兼职sem是什么方法
  • 凡客网站可以建设会员系统吗推广策略都有哪些
  • 2008iis搭建网站启信聚客通网络营销策划
  • 怎么把网站做seo到首页收录好的网站有哪些
  • 响应式网站建设公司‘营销自动化
  • 宾爵手表官方网站公司注册流程
  • 广州市政府门户网站建议小学生简短小新闻摘抄
  • 电子网站模板长沙seo代理
  • html做网站怎么链接音乐推广普通话绘画
  • 做众筹网站怎么赚钱网站安全检测
  • 新手做亚马逊要逛哪些网站360推广登录平台