当前位置: 首页 > news >正文

搜狗收录查询建设优化网站

搜狗收录查询,建设优化网站,凡科做的免费网站,做的高大上的网站文章目录 一、目标检测介绍二、YOLOX介绍三、源码获取四、环境搭建4.1 环境检测 五、数据集准备六、模型训练七、模型验证八、模型测试 一、目标检测介绍 目标检测(Object Detection)是计算机视觉领域的一项重要技术,旨在识别图像或视频中的…

文章目录

  • 一、目标检测介绍
  • 二、YOLOX介绍
  • 三、源码获取
  • 四、环境搭建
    • 4.1 环境检测
  • 五、数据集准备
  • 六、模型训练
  • 七、模型验证
  • 八、模型测试

一、目标检测介绍

目标检测(Object Detection)是计算机视觉领域的一项重要技术,旨在识别图像或视频中的特定目标并确定其位置。通过训练深度学习模型,如卷积神经网络(CNN),可以实现对各种目标的精确检测。常见的目标检测任务包括:人脸检测、行人检测、车辆检测等。目标检测在安防监控、自动驾驶、智能零售等领域具有广泛应用前景。

二、YOLOX介绍

论文链接:YOLOX: Exceeding YOLO Series in 2021

背景:随着物体检测的发展,YOLO系列始终追求实时应用的最佳速度和精度权衡。而且在过去两年中,目标检测学术界的主要进展都集中在无锚检测器 、高级标签分配策略 和端到端(无 NMS)检测器。而YOLOV4和YOLOV5仍然是基于锚的检测器。由于计算资源的限制导致这些优秀的检测器并不能广泛运用。

创新与贡献

  1. Backbone。使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;
  2. PAN-FPN。毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块
  3. Decoupled-Head。是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;
  4. Anchor-Free。YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;
  5. 损失函数。YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;
  6. 样本匹配。YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

三、源码获取

  1. 源码:点击
  2. bubbliiiing的代码:点击

四、环境搭建

我这里的环境安装的方式是根据源码安装的,但是我的代码是下载的bubbliiiing的。
第一步:Install YOLOX from source
cd YOLOX
pip install -v -e . # or python setup.py develop

第二步:安装cuda、torch、torchvision重要的环境。参考这个博客

环境版本
python3.7.11
cuda10.1
torch1.8.0+cu101
torchvision0.9.0+cu101

第三步:安装之后进入到此环境下的代码主目录,在终端运行

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/

4.1 环境检测

下载YOLOX-S:点击
在这里插入图片描述
下载之后将模型放在下图位置,并修改predict.py路径
在这里插入图片描述
然后运行predict.py即可,输入图片路径,将得到下面的结果。在这里插入图片描述

五、数据集准备

通过labelImg标注图片得到xml和原图,分别放置在这两个文件夹下(labelImg的使用可查看这个博客)
在这里插入图片描述
这时候就需要将此数据集转换成VOC格式的数据集,方可训练。

通过voc_annotation.py来将数据集进行划分,注意几个地方:

  • annotation_mode为0/1/2的时候的区别,代码里面有备注
  • classes_path:数据集的类别情况,要改为自己的类别
  • 其他地方就是修改路径的问题,改成自己数据集对应的路径

运行后发现在这里插入图片描述

六、模型训练

这时候你会发现在主目录下会得到两个txt文件,一个用于训练一个用于验证。
然后你运行train.py,model_path修改为自己的类别文件路径。然后就可以运行。

python train.py

在这里插入图片描述
训练的同时我们也可以通过tensorboard来查看训练损失和其他指标的图
在这里插入图片描述
在这里插入图片描述

七、模型验证

通过get_map.py来验证模型的准确率、召回率、F1和mAP。(若想要测试集多点,需通过voc_annotation.py来划分数据集的测试集)

python get_map.py

修改的地方

  • map_mode:第一次使用需要设置为0
  • classes_path:为自己的类别文件路径
  • VOCdevkit_path:为自己的数据集路径
  • 还有其他的相关路径的修改
    在这里插入图片描述
    第一次必须使用map_mode = 0才能运行。因为后面有些模式需要结合检测的结果来进行绘制,

由于训练时间问题,我只是简单测试了一下训练效果,没有进行大量的epoch训练,所以效果并不是很好
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述在这里插入图片描述

在这里插入图片描述

八、模型测试

通过predict.py来对模型测试。

修改的地方

  • mode:可选择图片、视频、fps、热力图、转换成onnx模型等
  • 还有model_path和classes_path也需要改为自己的(和训练情况一样,model_path为训练好的模型文件)
    单张图片
    在这里插入图片描述
    热力图
    在这里插入图片描述
http://www.yidumall.com/news/84072.html

相关文章:

  • 深圳微网站开发济南网站seo优化
  • 重庆渝中区企业网站建设公司网站搜索排名优化
  • 网站开发合同 保密条款苏州疫情最新通知
  • wordpress插件团购无线网络优化工程师
  • 请人做网站我要提供什么需求小红书seo排名帝搜软件
  • 曲靖网站设计seo查询工具有哪些
  • 咨询聊城网站建设上海网站seo
  • 用dw可以做动态网站吗列举五种网络营销模式
  • 更换网站域名之后google网页版登录入口
  • 做美团网站怎么做seo兼职怎么收费
  • 前端网站设计 dreamweaver优化设计四年级上册语文答案
  • 苏州专业做网站游戏代理平台有哪些
  • wordpress主题怎么删除资阳市网站seo
  • 石景山区城乡建设委员会网站seo平台是什么意思
  • 企业网站建设的目的和意义seo推广思路
  • 做网站需要学习什么知识最新国际足球世界排名
  • crm网站下载线上营销公司
  • 做平台网站外包多少钱啊宁波关键词优化品牌
  • 站长之家ppt模板seo策略是什么意思
  • 深圳骏域网站建设专家88百度识图 上传图片
  • 宣传片制作标准参数seo站长查询
  • 大学生水果预定配送网站建设的项目规划书软文营销的五大注意事项
  • 上海大学生兼职做网站什么是网络营销?
  • 学习做网站百度指数是免费的吗
  • wordpress关闭主循环广州seo报价
  • 国外网站赚钱北京营销公司比较好的
  • 有什么网站是可以做动态图的网页关键词排名优化
  • 嘉兴电子商务网站建设网站历史权重查询
  • 腾讯云搭建网站计算机培训机构
  • 网站快速优化排名搭建一个app平台要多少钱