当前位置: 首页 > news >正文

织梦网站内容自动更新个人网站制作流程

织梦网站内容自动更新,个人网站制作流程,做环保是跑还是网站卖,只做app不做网站可以吗文章目录 题目1584.连接所有点的最小费用 最小生成树MST,有两种算法进行求解,分别是Kruskal算法和Prim算法Kruskal算法从边出发,适合用于稀疏图Prim算法从顶点出发,适合用于稠密图:基本思想是从一个起始顶点开始&#…

文章目录

  • 题目
    • 1584.连接所有点的最小费用

  • 最小生成树MST,有两种算法进行求解,分别是Kruskal算法Prim算法
  • Kruskal算法从边出发,适合用于稀疏图
  • Prim算法从顶点出发,适合用于稠密图:基本思想是从一个起始顶点开始,逐步扩展生成树,每次选择一条连接已选顶点和未选顶点的最小权重边,直到所有顶点都被包含在生成树中。

Prim算法的基本步骤:

  • 初始化:选择一个起始顶点,将其加入生成树中。
  • 选择最小边:在所有连接生成树中顶点和未加入生成树的顶点的边中,选择权重最小的边。
  • 扩展生成树:将这条边及其连接的未加入顶点加入生成树。
  • 重复:重复步骤2和步骤3,直到所有顶点都加入生成树。

与求解最短路径的Dijkstra算法的求解思路是有异曲同工之妙的

  • Prim 算法的朴素模版,时间复杂度 O ( n 2 ) O(n^2) O(n2)
# 该模版可以求解最小生成树的权值ans = 0# done[i]表示节点i到最小生成树的最小距离是否确定done = [False]*n # 注意,现在并没有设置done[0]=Truedis = [float('inf')]*ndis[0] = 0# 构建最小生成树for i in range(n):m = float('inf')# 还没在树中,并且到达树的距离最小的节点for j in range(n):if not done[j] and (node < 0 or dis[j] < dis[node]):node = jdone[node] = True# 累加情况ans += dis[node]# 更新node的邻居的情况for neigh in range(n):if not done[neigh] and edge[node][neigh] < dis[neigh]:dis[neigh] = edge[node][neigh]return ans
  • Kruakal算法是从边出发,一直合并不与当前节点形成环的边,时间复杂度 O ( e l o g e ) O(eloge) O(eloge),e是边数
  • Kruskal算法模版
        # 先按照距离排序edge.sort(key=lambda x:x[0])# 使用并查集parent = list(range(n))def find(index):if parent[index] != index:parent[index] = find(parent[index])return parent[index]def union(index1,index2):parent[find(index1)] = find(index2)ans = 0count = 0 # 计数器# 对边进行遍历for d,x,y in edge:fx,fy = find(x),find(y)# 当属于同一个祖先就不要,不然会形成环if fx == fy:continueans += d# 更新计数器count+=1union(x,y)# 如何合并了n-1的边,就结束if count == n-1:breakreturn ans

题目

1584.连接所有点的最小费用

1584.连接所有点的最小费用

在这里插入图片描述

思路分析:最小生成树的模版题目

  • 使用Prim算法模版题
class Solution:def minCostConnectPoints(self, points: List[List[int]]) -> int:# 有两种实现方式,分别是Kruskal算法和Prim 算法# Kruskal算法从边出发,适合用于稀疏图,prim算法从点出发,适合用于稠密图n = len(points)# 先构建邻接表edge = [[float('inf')]*n for _ in range(n)]for i in range(n):x1,y1 = points[i]for j in range(i+1,n):x2,y2 = points[j]d = abs(x1-x2)+abs(y1-y2)edge[i][j] = d edge[j][i] = d # 该模版可以求解最小生成树的权值ans = 0# done[i]表示节点i到最小生成树的最小距离是否确定done = [False]*n # 注意,现在并没有设置done[0]=Truedis = [float('inf')]*ndis[0] = 0# 构建最小生成树for i in range(n):m = float('inf')# 还没在树中,并且到达树的距离最小的节点for j in range(n):if not done[j] and (node < 0 or dis[j] < dis[node]):node = jdone[node] = True# 累加情况ans += dis[node]# 更新node的邻居的情况for neigh in range(n):if not done[neigh] and edge[node][neigh] < dis[neigh]:dis[neigh] = edge[node][neigh]return ans
  • 使用Kruskal算法模版
class Solution:def minCostConnectPoints(self, points: List[List[int]]) -> int:# 有两种实现方式,分别是Kruskal算法和Prim 算法# Kruskal算法从边出发,适合用于稀疏图,prim算法从点出发,适合用于稠密图# 使用Kruskal,从边出发n = len(points)edge = []# 将全部的边都加入这个edgefor i in range(n):x1,y1 = points[i]for j in range(i+1,n):x2,y2 = points[j]d = abs(x1-x2)+abs(y1-y2)edge.append((d,i,j))# 先按照距离排序edge.sort(key=lambda x:x[0])# 使用并查集parent = list(range(n))def find(index):if parent[index] != index:parent[index] = find(parent[index])return parent[index]def union(index1,index2):parent[find(index1)] = find(index2)ans = 0count = 0 # 计数器for d,x,y in edge:fx,fy = find(x),find(y)if fx == fy:continueans += dcount+=1union(x,y)if count == n-1:breakreturn ans
http://www.yidumall.com/news/82622.html

相关文章:

  • 安徽做手机网站培训机构好还是学校好
  • wordpress相册打造的视频弹出北京seo顾问推推蛙
  • 企业网站建设目的是什么百度怎么精准搜关键词
  • 歪歪小站 wordpress百度网盘app
  • 建设企业网站都需要啥头条新闻
  • 那个网站推作者百度收录api怎么提交
  • dede后台做两个网站快手秒赞秒评网站推广
  • 做任务 网站seo网站推广首页排名
  • 大型购物网站设计近10天的时事新闻
  • 零食网页制作素材长沙竞价优化
  • 别人做的网站不能用怎么办晨阳seo顾问
  • 东方烟草网东方烟草网seo简单优化操作步骤
  • axure怎么做优酷网站微信怎么做推广
  • 做英文网站可以申请补贴吗网络推广页面
  • 兰州做网站荥阳seo
  • 专业做网站制作站长工具
  • 企业定制网站开发维护合同新的seo网站优化排名 排名
  • 做网站15年中国最大网站排名
  • 广州做网站公司哪家好太原网络推广公司哪家好
  • 平顶山建设局网站网站权重什么意思
  • hao123主页下载安装项目优化seo
  • 响应式网站适合用什么框架做游戏优化大师有用吗
  • 注册网站如何备案上海还能推seo吗
  • 做社交网站框架优化视频
  • php自己做网站常州网络推广哪家好
  • 口碑好的高密网站建设郑州seo地址
  • 成都网站建设 川icp备百度客户端
  • h5游戏平台代理广州seo网站推广平台
  • 网站设计发展趋势百度权重怎么提高
  • 网站 关键词库关键词采集网站