当前位置: 首页 > news >正文

asp网站后台不能编辑怎么申请网站详细步骤

asp网站后台不能编辑,怎么申请网站详细步骤,广州做网站的公司,网站做多个单页链接本文为为🔗365天深度学习训练营内部文章 原作者:K同学啊 一 回顾DenseNet算法 DenseNet(Densely Connected Convolutional Networks)是一种深度卷积神经网络架构,提出的核心思想是通过在每一层与前面所有层进行直接连接…

本文为为🔗365天深度学习训练营内部文章

原作者:K同学啊

 一 回顾DenseNet算法

DenseNet(Densely Connected Convolutional Networks)是一种深度卷积神经网络架构,提出的核心思想是通过在每一层与前面所有层进行直接连接,极大地增强了信息和梯度的流动。传统的卷积神经网络(CNN)结构中,每一层的输入仅来自前一层,而DenseNet通过让每一层的输入包含所有前面层的输出,形成了更密集的连接。这样的设计能够减少梯度消失的问题,促进特征复用,提高模型的表现力和学习效率。

DenseNet的优势主要体现在两个方面。首先,由于密集连接的特点,它在同等参数量下比传统的卷积网络能够学习到更丰富的特征,提升了网络的性能。其次,由于每层都接收前面层的特征图,DenseNet有效缓解了深度神经网络中训练难度较大的问题,特别是在处理深层网络时,可以显著提高梯度的传递效率,减少了对大规模数据集的需求。通过这些优点,DenseNet在图像分类、目标检测等任务中表现出色。

通道注意力机制上文提及,不再叙述。以下是DenseNet+SE-Net代码 

'''
SE模块实现
'''
import tensorflow as tf
from keras.models import Model
from keras import layers
from keras import backendclass Squeeze_excitation_layer(tf.keras.Model):def __init__(self, filter_sq):super().__init__()self.filter_sq = filter_sqself.avepool = tf.keras.layers.GlobalAveragePooling2D()def build(self, input_shape):self.dense1 = tf.keras.layers.Dense(self.filter_sq, activation='relu')self.dense2 = tf.keras.layers.Dense(input_shape[-1], activation='sigmoid')def call(self, inputs):squeeze = self.avepool(inputs)excitation = self.dense1(squeeze)excitation = self.dense2(excitation)excitation = tf.keras.layers.Reshape((1, 1, inputs.shape[-1]))(excitation)scale = inputs * excitationreturn scaledef dense_block(x,blocks,name):for i in range(blocks):x = conv_block(x,32,name=name+'_block'+str(i+1))return xdef conv_block(x,growth_rate,name):bn_axis = 3x1 = layers.BatchNormalization(axis=bn_axis,epsilon=1.001e-5,name=name+'_0_bn')(x)x1 = layers.Activation('relu',name=name+'_0_relu')(x1)x1 = layers.Conv2D(4*growth_rate,1,use_bias=False,name=name+'_1_conv')(x1)x1 = layers.BatchNormalization(axis=bn_axis,epsilon=1.001e-5,name=name + '_1_bn')(x1)x1 = layers.Activation('relu', name=name + '_1_relu')(x1)x1 = layers.Conv2D(growth_rate, 3, padding='same',use_bias=False, name=name + '_2_conv')(x1)x = layers.Concatenate(axis=bn_axis,name=name+'_concat')([x,x1])return xdef transition_block(x,reduction,name):bn_axis = 3x = layers.BatchNormalization(axis=bn_axis,epsilon=1.001e-5,name=name+'_bn')(x)x = layers.Activation('relu',name=name+'_relu')(x)x = layers.Conv2D(int(backend.int_shape(x)[bn_axis] * reduction),1,use_bias=False,name=name+'_conv')(x)x = layers.AveragePooling2D(2,strides=2,name=name+'_pool')(x)return xdef DenseNet(blocks,input_shape=None,classes=1000,**kwargs):img_input = layers.Input(shape=input_shape)bn_axis = 3# 224,224,3 -> 112,112,64x = layers.ZeroPadding2D(padding=((3,3),(3,3)))(img_input)x = layers.Conv2D(64,7,strides=2,use_bias=False,name='conv1/conv')(x)x = layers.BatchNormalization(axis=bn_axis,epsilon=1.001e-5,name='conv1/bn')(x)x = layers.Activation('relu',name='conv1/relu')(x)# 112,112,64 -> 56,56,64x = layers.ZeroPadding2D(padding=((1,1),(1,1)))(x)x = layers.MaxPooling2D(3,strides=2,name='pool1')(x)# 56,56,64 -> 56,56,64+32*block[0]# DenseNet121 56,56,64 -> 56,56,64+32*6 == 56,56,256x = dense_block(x,blocks[0],name='conv2')# 56,56,64+32*block[0] -> 28,28,32+16*block[0]# DenseNet121 56,56,256 -> 28,28,32+16*6 == 28,28,128x = transition_block(x,0.5,name='pool2')# 28,28,32+16*block[0] -> 28,28,32+16*block[0]+32*block[1]# DenseNet121 28,28,128 -> 28,28,128+32*12 == 28,28,512x = dense_block(x,blocks[1],name='conv3')# DenseNet121 28,28,512 -> 14,14,256x = transition_block(x,0.5,name='pool3')# DenseNet121 14,14,256 -> 14,14,256+32*block[2] == 14,14,1024x = dense_block(x,blocks[2],name='conv4')# DenseNet121 14,14,1024 -> 7,7,512x = transition_block(x,0.5,name='pool4')# DenseNet121 7,7,512 -> 7,7,256+32*block[3] == 7,7,1024x = dense_block(x,blocks[3],name='conv5')# 加SE注意力机制x = Squeeze_excitation_layer(16)(x)x = layers.BatchNormalization(axis=bn_axis,epsilon=1.001e-5,name='bn')(x)x = layers.Activation('relu',name='relu')(x)x = layers.GlobalAveragePooling2D(name='avg_pool')(x)x = layers.Dense(classes,activation='softmax',name='fc1000')(x)inputs = img_inputif blocks == [6,12,24,16]:model = Model(inputs,x,name='densenet121')elif blocks == [6,12,32,32]:model = Model(inputs,x,name='densenet169')elif blocks == [6,12,48,32]:model = Model(inputs,x,name='densenet201')else:model = Model(inputs,x,name='densenet')return modeldef DenseNet121(input_shape=[224,224,3],classes=3,**kwargs):return DenseNet([6,12,24,16],input_shape,classes,**kwargs)def DenseNet169(input_shape=[224,224,3],classes=3,**kwargs):return DenseNet([6,12,32,32],input_shape,classes,**kwargs)def DenseNet201(input_shape=[224,224,3],classes=3,**kwargs):return DenseNet([6,12,48,32],input_shape,classes,**kwargs)from tensorflow.keras.optimizers import Adam# 实例化模型,指定输入形状和类别数
model = DenseNet201(input_shape=[224,224,3], classes=2)
model.summary()
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=1e-7)model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])epochs = 25history = model.fit(train_ds,validation_data=val_ds,epochs=epochs,
)# 获取实际训练轮数
actual_epochs = len(history.history['accuracy'])acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(actual_epochs)plt.figure(figsize=(12, 4))# 绘制准确率
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')# 绘制损失
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')plt.show()

总结:DenseNet与SE-Net(Squeeze-and-Excitation Networks)结合后,能够进一步增强模型的表现力和效率。DenseNet通过密集连接每一层,促进了特征的复用和梯度的流动,而SE-Net通过引入通道注意力机制,能够自动学习每个特征通道的重要性,调整通道的权重。将这两者结合起来,DenseNet负责加强特征之间的关联性和信息流动,而SE-Net则提升了特征通道的自适应能力,使得网络能够在不同任务中更加精准地利用最有用的特征。这样的结合使得模型在保持高效的同时,能够更加聚焦于有价值的特征,从而提升了性能,尤其在处理复杂的视觉任务时,表现尤为出色。

http://www.yidumall.com/news/81986.html

相关文章:

  • 文化馆建设网站安卓优化大师最新版
  • 专门做ppt的网站手机版怎么用百度快照
  • 怎么做b2b网站seo搜索引擎优化内容
  • 专业网站建设服务公司哪家好新手怎么引流推广推广引流
  • 网站建设需要服务器吗燕郊今日头条
  • 通化网站建设今日头条官网
  • 网站如何加入广告联盟广州网站建设公司
  • 公司做的网站访问很慢个人建站
  • wordpress相关文章源文件网络运营seo是什么
  • 郑州专业网站建设北京seo优化方案
  • 网站建设的上市公司重庆森林讲了什么故事
  • 网站焦点图如何美观谷歌浏览器下载手机版安卓
  • 医院网站可以自己做吗seo服务外包费用
  • 深圳方维网站建设公司公司网站制作模板
  • 最新全国疫情数据统计表整站seo优化
  • 网站建设源代码怎么搭建域名权重查询工具
  • 深圳网站制作与建设公司海南网站制作
  • delphi xe10网站开发免费关键词优化工具
  • 网站建设的结论简单网站建设优化推广
  • 外贸开发产品网站建设seoul是什么品牌
  • 商业网站 模板网站注册要多少钱
  • 北京智能网站建设系统加盟近期的新闻热点
  • 做网站会什么软件网络营销的特点是什么
  • 企业网站的制作及维护重庆放心seo整站优化
  • 站长工具劲爆百度快照搜索
  • 做网站一个人能做吗企业qq手机版
  • 企业网站价格花如何做线上推广
  • 做消费网站流程上海seo排名
  • 网站怎样做图片滚动免费的网站域名查询app
  • html5+css3网站模板百度安装应用