当前位置: 首页 > news >正文

怎么用别人网站做模板佛山关键词排名效果

怎么用别人网站做模板,佛山关键词排名效果,网站设计怎么用黑色,重庆网站建设熊掌号如何评估分类模型的好坏 评估分类预测模型的质量,常用一个矩阵、三条曲线和六个指标。 一个矩阵:混淆矩阵;三条曲线:ROC曲线、PR曲线、KS曲线;六个指标:正确率Acc、查全率R、查准率P、F值、AUC、BEP值、KS…

如何评估分类模型的好坏

评估分类预测模型的质量,常用一个矩阵、三条曲线和六个指标。

  • 一个矩阵:混淆矩阵;
  • 三条曲线:ROC曲线、PR曲线、KS曲线;
  • 六个指标:正确率Acc、查全率R、查准率P、F值、AUC、BEP值、KS值。

ROC曲线和AUC值

  ROC曲线

ROC曲线(Receiver Operating Characteristic curve),即接收者操作特征曲线,是反映TPR和FPR的综合指标。

TPR = TP/(TP+FN),即正类中正确预测的百分比(查全率)。

FPR = FP/(FP+TN),即负类中错误预测的百分比(相当于误判率)。

 

ROC曲线是由点(TPR,FPR)组成的曲线,横坐标是FPR,而纵坐标是TPR。

显然,ROC曲线应该越靠近左上角越好,即表示查全率越高,而误判率越低。

一般来说,如果ROC是光滑的,那么基本可以判断没有太大的过拟合。

 

ROC曲线有助于比较不同分类器的相对性能。如下两个模型M1和M2,当FPR小于0.36时模型M1较好,而当FPR大于0.36时模型M2较好。

 

 

   AUC

与ROC曲线一同使用的,还有AUC指标。

AUC(Area Under Curve),其实就是ROC曲线下方的面积。

因为,ROC曲线一般都处于对角线的上方,即模型的效果应该比瞎猜(猜中的概率为50%)要好,所以AUC的取值范围一般是[0.5,1]。

AUC值越大,即ROC曲线越靠近左上角,其下方的面积越大,说明模型质量越高。

 

显然,由于ROC/AUC与混淆矩阵的TP、FP、TN、FN四个值都有关,所以,AUC是一个综合的评价指标。AUC值越大,也相当于TP和TN越大越好,FP和FN越小越好。

 

所以在大多数数据挖掘比赛中,要比较两个模型哪个会更优,AUC指标要比Accuracy指标常用得多,也比其它查全率R和查准率P要常用得多。

 

PR曲线和BEP值

   PR曲线

PR曲线,反应的是查准率P和查全率R之间的关系。以P为横坐标,R作为纵坐标,就是PR网线。

 

P = TP/(TP+FP),即模型预测的正类中被正确预测的百分比。

R = FP/(FP+FN),即正类中被正确预测的百分比。

 

对于同一个分类模型,通过调整分类的阈值(从大到小变化),就可以得到不同的P-R值,即可画出PR曲线。

显然,我们要求P和R都应该是越高越好。如果一个模型的PR曲线被另一个模型的PR曲线所“包住”,则后者的性能要优于前者。如下图所示,模型A比模型C的性能要好,模型B比模型C的性能也要好。

一般情况下,查准率和查全率这两个指标不可能兼顾。要想查全率R高,则模型需要输出更多的样本(极端地,返回全部样本,则查全率为100%);要想查准率P高,则要求在模型认为的正类中,尽量地选择少的概率高的样本。

 

  BEP

PR曲线中,一般要求P和R都越高越好,因此引入了一个指标BEP来表示模型的质量。

BEP(Break Even Point),亦称盈亏平衡点、保本点。即当查准率=查全率时的值。

在上图中,模型A和模型B,由于存在交叉,不太容易判断哪个模型会更好。如果使用BEP来判断,可知模型A的性能要优于模型B的性能。

 

显然,由于PR /BEP与混淆矩阵的TP、FP、FN三个值都有关(与TN无关),所以,BEP并不是一个综合的评价指标。

但是,即使是正样本非常少的情况下,PR表现的效果也比较好。也就是说,在正负样本不平衡的情况下,PR曲线比ROC曲线能更有效地反应分类器的好坏。

KS曲线和KS值

   KS曲线

KS曲线(Kolmogorov-Smirnov),又叫洛伦兹曲线。以TPR和FPR分别分为纵轴,以阈值作为横轴,画出两条曲线。KS曲线反映的是在同一阈值下TPR和FPR的差值。

 

 

显然,我们希望的是TPR越高越好,而FPR越低越好,即要求两条折线离得越开越好,这说明模型对于正负样本区分度更好。

可以知道,KS曲线和ROC曲线一样,描述的都是TPR和FPR的关系,只是横坐标的取法不一样。

 

   KS值

考虑到量化,所以将TPR和FPR折线的最远距离作为KS值,即KS=max(TPR-FPR),作为模型的分区度。

K-S值越大,表示评分模型能够将“好客户”、“坏客户”区分开来的程度越大。

一般认为:

1)  当KS<0.2时,模型无鉴别能力

2)  在0.2~0.4之间,模型勉强接受,需要考虑优化

3)  在0.4~0.5之间,模型有区别能力

4)  在0.5~0.6之间,模型有较好的区别能力

5)  在0.6~0.7之间,模型有非常好的区别能力

6)  当KS>0.75时,要检验模型是否过拟合

 

由于KS值主要是体现模型中差异的最大的一个分段,因此适合于找阈值。像信用评分卡中,就比较适合使用KS值来评估,寻找出最大的区分度阈值。

曲线对比

 

一般来说,ROC曲线会更稳定,在正负样本足够(样本均衡)的情况下,ROC曲线会比较稳定,能够反映模型的整体质量。当样本不平衡时,特别是正样本极少时,ROC曲线并不准确。

在样本不均衡时,特别是正样本数远小于负样本数时,采用PR曲线会更合适。

而KS曲线,只是反映出哪个分段的区分度是最大的,而不能反映出总体的效果。所以,KS曲线往往只用在寻找区分的最佳阈值(比如信用评分卡中的审批阈值)。

 

一般情况下,最好能够综合考虑上述的三种曲线以及三个指标,这样对模型有一个全面的质量评估。

http://www.yidumall.com/news/80635.html

相关文章:

  • 哪个网站做批发最便宜又好看seo系统培训哪家好
  • 免费网站登录口看完你会感谢我培训体系包括四大体系
  • 大学生创新创业平台百度seo排名优化价格
  • 注册什么公司给别人做网站今日发生的重大新闻
  • 十大web网站漏洞扫描工具搜索引擎seo关键词优化效果
  • 上海门户网站建设宁德市人社局
  • 成都旅游地图深圳网站优化平台
  • 免费做流程图的网站厦门人才网招聘最新信息
  • 苏州绿叶网站建设教程seo推广排名网站
  • 网站建设成本核算好的推广方式
  • 乡镇政府可以做网站认网站收录
  • 淘宝客网站模板谷粉搜索谷歌搜索
  • 女的和女的做那个视频网站短视频推广渠道
  • 做淘宝哪个女装批发网站比较好seo关键词有哪些类型
  • 网站开发工作难吗青岛seo网站管理
  • 我要制作网站市场营销的八个理论
  • 外贸关键词网站如何进行app推广
  • 中国工程建设监理协会网站旺道seo软件技术
  • 昆山教育云平台网站建设百度广告搜索推广
  • 微商网站怎么做有了域名怎么建网站
  • 中国能源建设集团有限公司是央企北京做seo的公司
  • 做网站从设计到上线流程百度app怎么找人工客服
  • 企业网站分析网络营销方案设计
  • 如何把代码放在网站首页教程博客营销
  • 网站图解图片是用什么软件做的代刷网站推广免费
  • 温州大型网站设计公司seo就业哪家好
  • 手机兼职赚钱平台文军seo
  • 做网站 怎么赚钱高端婚恋网站排名
  • 犀牛云做的网站怎么样种子搜索引擎
  • 做网站与全网营销搜索推广排名优化最好用的免费建站平台