当前位置: 首页 > news >正文

个人购物网站 怎么建品牌软文

个人购物网站 怎么建,品牌软文,网站建设专家老司机,哈尔滨网站开发工作室目录 一,什么是并查集 二,并查集的结构 三,并查集的代码实现 1,并查集的大致结构和初始化 2,find操作 3,Union操作 4,优化 小结: 四,并查集的应用场景 省份…

目录

一,什么是并查集

二,并查集的结构 

三,并查集的代码实现 

1,并查集的大致结构和初始化

2,find操作 

3,Union操作

4,优化 

小结:

四,并查集的应用场景

省份数量[OJ题] 


一,什么是并查集

核心概念:并查集是一种 用于管理元素分组 的数据结构。

在一些应用问题中,需将n个不同的元素划分成一些不相交的集合,开始时,n个元素各自成一个集合,然后按照一定规律将部分集合合成一个集合,也就是集合合并并查集(union-find)适合来描述这类问题。

对于并查集,我们可以将它看成是一个森林,森林是由多棵树组成的,并查集中的一个个集合就可以看作是树。

示例:

二,并查集的结构 

并查集的存储结构和树的双亲表示法相似。

所谓双亲表示法,就是在树的节点中,只存储父节点的指针,不存储孩子节点的指针。通过指针可以找到父节点。因为对于一颗树来说,可能有多个孩子 ,但只有一个父节点。

 

对于上图中:

节点0的数组值为-4,说明该节点为根节点。

节点6的数组值为0,说明该节点的父节点为0。

节点7的数组值为0,说明该节点的父节点为0。

节点8的数组值为0,说明该节点的父节点为0。

三,并查集的代码实现 

并查集主要支持一下操作:

  • 查询(find),查询一个元素在哪个集合中。
  • 合并(union),将两个集合合并为一个。

1,并查集的大致结构和初始化

class UnionFind
{
public:
    UnionFind(size_t n)
        :_ufs(n,-1)
    {}

    //......
private:
    vector<int> _ufs;
};

2,find操作 

在并查集中找到包含x的根

int findRoot(int x)
{
    int root = x;

    while (_ufs[root] >= 0)
        root = _ufs[root];

    return root;
}
 

3,Union操作

合并两个集合

void Union(int x1, int x2)
{
    int root1 = findRoot(x1);
    int root2 = findRoot(x2);
    if (root1 == root2)
        return; //在同一个集合中

    //这里在合并的时候采用数据量小的向数据量大的合并
    //也就是小树向大树合并
    if (abs(_ufs[root1]) < abs(_ufs[root2]))//root1节点更少
    {
        _ufs[root2] += _ufs[root1];
        _ufs[root1] = root2;   //小树合并到大树
    }
    else
    {
        //root2节点更少
        _ufs[root1] += _ufs[root2];
        _ufs[root2] = root1;
    }
}

4,优化 

当树比较高时,我们在反复查某个节点的根节点时,每次都会花费大量时间。

优化方法路径压缩,只要查找某个节点一次,就将查找路径上的所有节点挂到根节点下面。

如图:查找D的根A,查找路径上包含节点B,将节点D和节点B直接挂在根节点A的下面。

//路径压缩
int findRoot(int x)
{int root = x;while (_ufs[root] >= 0)root = _ufs[root];//路径压缩while (_ufs[x] >= 0){int parent = _ufs[x];_ufs[x] = root;   //挂在根节点的下面x = parent;}return root;
}

小结:

上述实现的并查集,支持连续元素。如果是处理非连续元素,需要使用哈希表代替数组(需额处理元素与索引的映射)。

核心思路:

  • 哈希映射unordered_map将任意类型元素映射为连续整数ID,内部用数组管理父节点
  • 动态扩容:自动添加新元素,无需预先指定规模。

  • 模板化:支持泛型数据类型(如string等)。

四,并查集的应用场景

  1. 连通性检测:判断网络中两个节点是否连通。

  2. 最小生成树(Kruskal算法):动态合并边,避免环。

  3. 社交网络分组:快速合并好友关系,查询是否属于同一社交圈。

总结:

并查集通过高效的查找与合并操作,成为处理动态连通性问题的核心数据结构。其优化方法(路径压缩、按秩合并)确保了接近常数的单次操作时间复杂度,适用于大规模数据场景。

其中的按秩合并就是合并集合时小树向大树合并。

省份数量[OJ题] 

题目链接:LCR 116. 省份数量 - 力扣(LeetCode)

 isConnected[i][j]=1,表示城市i和j连通,连通的城市为一个省份。用并查集将连通的数据放入一个集合,再统计最后的集合个数即可。

class Solution {
public:int findCircleNum(vector<vector<int>>& isConnected) {int n=isConnected.size();vector<int> _ufs(n,-1);//查找根auto find=[&](int x)->int{int root=x;while(_ufs[root]>=0)root=_ufs[root];return root;};for(int i=0;i<n;i++)for(int j=0;j<n;j++){if(isConnected[i][j]==1){//合并i和j集合int rooti=find(i),rootj=find(j);if(rooti!=rootj){_ufs[rooti]+=_ufs[rootj];_ufs[rootj]=rooti;}}}//统计集合数int ret=0;for(auto x:_ufs){if(x<0)ret++;}return ret;}
};

http://www.yidumall.com/news/79867.html

相关文章:

  • 合肥电脑网站建站种子资源
  • 宣传网站建设方案模板下载百度下载安装 官方
  • 织梦商城网站网页浏览器
  • 梅河口做网站软文营销的步骤
  • 品牌官方网站建设需要什么广州网站seo公司
  • 个人网站什么语言做安徽网站关键词优化
  • 网站建设与网页设计pdf阿里关键词排名查询
  • 学校网站模板wordpressseo项目分析
  • 美女做爰免费观看视频网站优化seo系统
  • 网站开发回访话术百度站内搜索的方法
  • 网站备案多个域名外贸是做什么的
  • 万网一台虚拟主机做多个网站关键字是什么意思
  • 网站支付宝接口付费网站友链外链
  • 揭阳公司做网站产品推广方案怎么做
  • 可以在什么网站做二建题目广点通投放平台登录
  • wordpress的商城网站制作公司杭州做百度推广的公司
  • 淘宝运营主要做些什么广州各区正在进一步优化以下措施
  • 南宁seo建站seo快速排名首页
  • 最好的网站建设用途2021年新闻摘抄
  • 湖北网站推广公司技巧高质量外链购买
  • 吉林省建设安全协会网站百度搜索指数排行
  • 影视会员代理平台网站网络营销推广专员
  • 常州网站建设流程长沙网站推广 下拉通推广
  • wordpress做双语网站企业网页设计与推广
  • 中国建设银行公司网站官网seo交流群
  • 徐州做网站的公司哪些好网站seo关键词优化技巧
  • 哪些网站是做色选机销售的推广竞价账户托管
  • 做flash网站遇到函数成都seo顾问
  • 龙华公司做网站114啦网址导航官网
  • 百度站长工具seo查询ip或域名查询网