当前位置: 首页 > news >正文

用ps做网站页面淘宝运营培训课程

用ps做网站页面,淘宝运营培训课程,最新项目加盟代理,wordpress数据库更改用户密码目录 一、(leetcode 62)不同路径 1.动态规划 1)确定dp数组(dp table)以及下标的含义 2)确定递推公式 3)dp数组的初始化 4)确定遍历顺序 5)举例推导dp数组 2.数论方…

目录

一、(leetcode 62)不同路径

1.动态规划

1)确定dp数组(dp table)以及下标的含义

2)确定递推公式

3)dp数组的初始化

4)确定遍历顺序

5)举例推导dp数组

 2.数论方法

二、(leetcode 63)不同路径 II


一、(leetcode 62)不同路径

力扣题目链接

1.动态规划

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

1)确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

2)确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

3)dp数组的初始化

首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

4)确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

5)举例推导dp数组

如图所示:

62.不同路径1

以上动规五部曲分析完毕,C++代码如下:

class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m, vector<int>(n, 0));for (int i = 0; i < m; i++) dp[i][0] = 1;for (int j = 0; j < n; j++) dp[0][j] = 1;for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];}
};
  • 时间复杂度:O(m × n)
  • 空间复杂度:O(m × n)

其实用一个一维数组(也可以理解是滚动数组)就可以了,但是不利于理解,可以优化点空间,建议先理解了二维,在理解一维,C++代码如下:

class Solution {
public:int uniquePaths(int m, int n) {vector<int> dp(n);for (int i = 0; i < n; i++) dp[i] = 1;for (int j = 1; j < m; j++) {for (int i = 1; i < n; i++) {dp[i] += dp[i - 1];}}return dp[n - 1];}
};
  • 时间复杂度:O(m × n)
  • 空间复杂度:O(n)

 2.数论方法

在这个图中,可以看出一共m,n的话,无论怎么走,走到终点都需要 m + n - 2 步。

62.不同路径

在这m + n - 2 步中,一定有 m - 1 步是要向下走的,不用管什么时候向下走。

那么有几种走法呢? 可以转化为,给你m + n - 2个不同的数,随便取m - 1个数,有几种取法。

那么这就是一个组合问题了。

62.不同路径2

求组合的时候,要防止两个int相乘溢出! 所以不能把算式的分子都算出来,分母都算出来再做除法。

例如如下代码是不行的。

class Solution {
public:int uniquePaths(int m, int n) {int numerator = 1, denominator = 1;int count = m - 1;int t = m + n - 2;while (count--) numerator *= (t--); // 计算分子,此时分子就会溢出for (int i = 1; i <= m - 1; i++) denominator *= i; // 计算分母return numerator / denominator;}
};

需要在计算分子的时候,不断除以分母,代码如下:

class Solution {
public:int uniquePaths(int m, int n) {long long numerator = 1; // 分子int denominator = m - 1; // 分母int count = m - 1;int t = m + n - 2;while (count--) {numerator *= (t--);while (denominator != 0 && numerator % denominator == 0) {numerator /= denominator;denominator--;}}return numerator;}
};
  • 时间复杂度:O(m)
  • 空间复杂度:O(1)

二、(leetcode 63)不同路径 II

力扣题目链接

有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了

动规五部曲:

1)确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

2)确定递推公式

递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。

但需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)

if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}

3)dp数组如何初始化

在62.不同路径 (opens new window)不同路径中我们给出如下的初始化:

vector<vector<int>> dp(m, vector<int>(n, 0)); // 初始值为0
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

如图:

63.不同路径II

下标(0, j)的初始化情况同理。

所以本题初始化代码为:

vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;

注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理

4)确定遍历顺序

从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。

for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {if (obstacleGrid[i][j] == 1) continue;dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}
}

5)举例推导dp数组

拿示例1来举例如题:

63.不同路径II1

对应的dp table 如图:

63.不同路径II2

如果这个图看不懂,建议再理解一下递归公式,然后照着文章中说的遍历顺序,自己推导一下!

动规五部分分析完毕,对应C++代码如下:

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m = obstacleGrid.size();int n = obstacleGrid[0].size();if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0return 0;vector<vector<int>> dp(m, vector<int>(n, 0));for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {if (obstacleGrid[i][j] == 1) continue;dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];}
};
  • 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
  • 空间复杂度:O(n × m)

同样给出空间优化版本:

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {if (obstacleGrid[0][0] == 1)return 0;vector<int> dp(obstacleGrid[0].size());for (int j = 0; j < dp.size(); ++j)if (obstacleGrid[0][j] == 1)dp[j] = 0;else if (j == 0)dp[j] = 1;elsedp[j] = dp[j-1];for (int i = 1; i < obstacleGrid.size(); ++i)for (int j = 0; j < dp.size(); ++j){if (obstacleGrid[i][j] == 1)dp[j] = 0;else if (j != 0)dp[j] = dp[j] + dp[j-1];}return dp.back();}
};
  • 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
  • 空间复杂度:O(m)
http://www.yidumall.com/news/77130.html

相关文章:

  • 牛网网站建设厦门百度seo
  • 苏州建材装修网站建设网站编辑seo
  • 怎样自己申请注册公司seo专业培训seo专业培训
  • 做游戏用什么电脑系统下载网站百度推广客服投诉电话
  • 优惠券网站要怎么做的百度搜索引擎的网址是
  • 济南市建设行政主管部门网站网站优化推广外包
  • wordpress 仿 模板下载seow是什么意思
  • 杨凌做网站的公司关键词下载
  • 在百度怎么免费制作网站广州seo营销培训
  • 新的网站怎么做seo西安seo经理
  • 纺织品公司网站建设阿里seo排名优化软件
  • 西安seo外包价格seo销售好做吗
  • 武汉做网站公司推荐网站联盟推广
  • 太原网站建设培训学校郑州seo排名公司
  • 中国4a广告公司100强临沂seo公司
  • 上海代办注册公司费用优化网站怎么做
  • 湛江市住房和城乡建设网站站长统计性宝app
  • 南阳做网站的关键词搜索站长工具
  • 织梦网站名称标签百度快照和广告的区别
  • 网站建设属于什么费用优化排名推广关键词
  • l临沂建设工程信息网站给公司做网站要多少钱
  • 搭建邮箱网站怎么做好网站方式推广
  • 做有奖竞猜网站违法吗长沙网站到首页排名
  • 品牌网站建设内容seo站内优化教程
  • 中园建设银行网站什么是网络营销公司
  • iis网站建设服务器域名怎么注册
  • 家具网站开发环境与工具b站不收费网站
  • 做网站必须购买空间吗?企业宣传册模板
  • 绵阳网站建设百度指数代表什么
  • 开发微信小程序商城廊坊快速优化排名