当前位置: 首页 > news >正文

微信公众号商城骗局宁波seo行者seo09

微信公众号商城骗局,宁波seo行者seo09,中国建设劳动学会监制网站,网站改版业务想要精通算法和SQL的成长之路 - 并查集的运用 前言一. 并查集的使用和模板1.1 初始化1.2 find 查找函数1.3 union 合并集合1.4 connected 判断相连性1.5 完整代码 二. 运用案例 - 省份数量 前言 想要精通算法和SQL的成长之路 - 系列导航 一. 并查集的使用和模板 先说一下并查集…

想要精通算法和SQL的成长之路 - 并查集的运用

  • 前言
  • 一. 并查集的使用和模板
    • 1.1 初始化
    • 1.2 find 查找函数
    • 1.3 union 合并集合
    • 1.4 connected 判断相连性
    • 1.5 完整代码
  • 二. 运用案例 - 省份数量

前言

想要精通算法和SQL的成长之路 - 系列导航

一. 并查集的使用和模板

先说一下并查集的相关知识点:

  • 含义:并查集,用于维护一组不相交的集合,支持合并两个集合和查询某个元素所属的集合。
  • 用途:解决图论、连通性问题和动态连通性等问题。

通俗一点,可以使用并查集的算法题目有哪些特征?

  • 需要将n个不同的元素划分为不相交的集合。
  • 开始的时候,每个元素自行成为一个集合,然后需要根据一定的顺序进行 合并
  • 同时还需要 查询 某个元素是否属于哪个集合。

因此并查集的基本操作可以包含两个:

  • 合并:将两个不相交的集合合并成一个集合。(将其中一个集合的根节点连接到另一个集合的根节点上)
  • 查找:根据某个元素,寻找到它所在集合的根节点。

1.1 初始化

首先我们考虑下,并查集里面需要有哪些数据结构:

  • 需要一个parent[]数组,用来存储每个元素对应的根节点。
  • 再来一个rank[]数组,代表以每个元素作为根节点,其所在集合的大小。即代表某个集合的深度。
  • 再来一个sum字段,代表当前的集合个数。
public class UnionFind {/*** 表示节点i的父节点*/private int[] parent;/*** 表示以节点i为根节点的子树的深度,初始时每个节点的深度都为0*/private int[] rank;private int sum;public UnionFind(int n) {parent = new int[n];rank = new int[n];// 初始时每个节点的父节点都是它自己for (int i = 0; i < n; i++) {parent[i] = i;}sum = n;}
}

1.2 find 查找函数

特征:

  • 入参:元素x
  • 要做的事情:不断地向上递归寻找这个x的根节点。
  • 递归终止条件:找到根节点。(根节点和元素本身一致)

代码如下:

public int find(int x) {while (x != parent[x]) {x = parent[x];}return x;
}

1.3 union 合并集合

特征:

  • 入参:元素xy
  • 要做的事情:分别找到这两个元素的根节点:rootXrootY
  • 如果俩元素的根节点是同一个,说明他们在一个集合当中,不需要任何操作。
  • 倘若两个元素的根节点不一样,根据两个集合的深度来判断。将深度小的那个集合,合并到深度大的集合中。同时更新对应的根节点和深度大小。

除此之外,我们还可以写一个简单的函数,用来判断两个元素是否处于同一个集合当中(或者是是否相连)

public void union(int x, int y) {int rootX = find(x);int rootY = find(y);// 如果两个元素的根节点一致,不需要合并if (rootX == rootY) {return;}// 如果根节点 rootX 的深度 > rootY。if (rank[rootX] > rank[rootY]) {// 那么将以rootY作为根节点的集合加入到rootX对应的集合当中rank[rootX] += rank[rootY];// 同时改变rootY的根节点,指向rootX。parent[rootY] = rootX;} else {// 反之rank[rootY] += rank[rootX];parent[rootX] = rootY;}
}

1.4 connected 判断相连性

/*** 判断两个节点是否在同一个集合中
*/
public boolean connected(int x, int y) {return find(x) == find(y);
}

1.5 完整代码

/*** @author Zong0915* @date 2023/10/4 下午2:52*/
public class UnionFind {/*** 表示节点i的父节点*/private int[] parent;/*** 表示以节点i为根节点的子树的深度,初始时每个节点的深度都为0*/private int[] rank;private int sum;public UnionFind(int n) {parent = new int[n];rank = new int[n];// 初始时每个节点的父节点都是它自己for (int i = 0; i < n; i++) {parent[i] = i;}sum = n;}public int find(int x) {while (x != parent[x]) {x = parent[x];}return x;}public void union(int x, int y) {int rootX = find(x);int rootY = find(y);// 如果两个元素的根节点一致,不需要合并if (rootX == rootY) {return;}// 如果根节点 rootX 的深度 > rootY。if (rank[rootX] > rank[rootY]) {// 那么将以rootY作为根节点的集合加入到rootX对应的集合当中rank[rootX] += rank[rootY];// 同时改变rootY的根节点,指向rootX。parent[rootY] = rootX;} else {// 反之rank[rootY] += rank[rootX];parent[rootX] = rootY;}}/*** 判断两个节点是否在同一个集合中*/public boolean connected(int x, int y) {return find(x) == find(y);}
}

二. 运用案例 - 省份数量

原题链接
在这里插入图片描述
我们在并查集模板的基础上进行改造:

class UnionFind {private int[] rank;// 每个省份具有的城市数量private int[] parent;// 每个城市对应的根节点(省份)private int sum;// 省份的数量public UnionFind(int[][] isConnected) {int len = isConnected.length;// 初始化,省份数量和提供的城市数量一致sum = len;// 每个集合具有的城市数量为1rank = new int[len];parent = new int[len];Arrays.fill(rank, 1);// 根节点指向自己for (int i = 0; i < len; i++) {parent[i] = i;}}public int find(int x) {while (x != parent[x]) {x = parent[x];}return x;}public void union(int x, int y) {int rootX = find(x);int rootY = find(y);// 如果两个元素的根节点一致,不需要合并if (rootX == rootY) {return;}// 如果根节点 rootX 的深度 > rootY。if (rank[rootX] > rank[rootY]) {// 那么将以rootY作为根节点的集合加入到rootX对应的集合当中rank[rootX] += rank[rootY];// 同时改变rootY的根节点,指向rootX。parent[rootY] = rootX;} else {// 反之rank[rootY] += rank[rootX];parent[rootX] = rootY;}// 合并成功,那么总集合数量要减1sum--;}
}

不过本题目当中,对于rank这个属性没有什么作用,最终看的是sum属性。因此大家可以把这个属性相关的给去除。

最后来看代码部分:

public int findCircleNum(int[][] isConnected) {// 初始化构造UnionFind unionFind = new UnionFind(isConnected);int len1 = isConnected.length;int len2 = isConnected[0].length;for (int i = 0; i < len1; i++) {for (int j = 0; j < len2; j++) {// 如果是相连的,那么将城市 i 和 j 合并if (isConnected[i][j] == 1) {unionFind.union(i, j);}}}// 最后返回集合个数(即省份的个数)return unionFind.sum;
}

最终代码如下:

public class Test547 {public int findCircleNum(int[][] isConnected) {UnionFind unionFind = new UnionFind(isConnected);int len1 = isConnected.length;int len2 = isConnected[0].length;for (int i = 0; i < len1; i++) {for (int j = 0; j < len2; j++) {// 如果是相连的,那么将城市 i 和 j 合并if (isConnected[i][j] == 1) {unionFind.union(i, j);}}}return unionFind.sum;}class UnionFind {private int[] rank;// 每个省份具有的城市数量private int[] parent;// 每个城市对应的根节点(省份)private int sum;// 省份的数量public UnionFind(int[][] isConnected) {int len = isConnected.length;// 初始化,省份数量和提供的城市数量一致sum = len;// 每个集合具有的城市数量为1rank = new int[len];parent = new int[len];Arrays.fill(rank, 1);// 根节点指向自己for (int i = 0; i < len; i++) {parent[i] = i;}}public int find(int x) {while (x != parent[x]) {x = parent[x];}return x;}public void union(int x, int y) {int rootX = find(x);int rootY = find(y);// 如果两个元素的根节点一致,不需要合并if (rootX == rootY) {return;}// 如果根节点 rootX 的深度 > rootY。if (rank[rootX] > rank[rootY]) {// 那么将以rootY作为根节点的集合加入到rootX对应的集合当中rank[rootX] += rank[rootY];// 同时改变rootY的根节点,指向rootX。parent[rootY] = rootX;} else {// 反之rank[rootY] += rank[rootX];parent[rootX] = rootY;}sum--;}}
}
http://www.yidumall.com/news/76922.html

相关文章:

  • 网站建设很难吗seo关键词排名优化系统源码
  • 网站建设一定要公司吗成都网站设计公司
  • 西安网站开发高端网站开发昆明seo排名外包
  • 无锡网站制作的公司有哪些百度营销推广登录
  • 海南房地产网站建设网站排名优化公司
  • 门户网站 模块品牌管理
  • 优化关键词有哪些方法夜狼seo
  • 青岛做网站建设的公司广州市疫情最新
  • 泉州专业建站品牌防控措施持续优化
  • 自己做的网站 网站备案流程百度广告联盟app
  • 河南网站建设制作海南网站推广
  • 怎么买做淘宝优惠券网站百度网盘搜索免费资源
  • 建德 网站如何做好关键词的优化
  • 网站开发后端是什么电子商务培训
  • 怎么在百度上制作自己的网站产品质量推广营销语
  • 表白网页在线生成网站源码网络营销软文范例500字
  • 江北网站建设下载百度app最新版
  • 成都专业做网站的公司有哪些金华关键词优化平台
  • 丹灶网站建设软文营销方案
  • 网站做等保二级收费多少seo排名赚app靠谱吗
  • 公益网站建设的意义百中搜优化软件
  • 做搜狗网站优化快速排一句吸引人的广告语
  • 廊坊网站群发关键词百度快速排名提升
  • 湛江个人网站建设百度竞价排名叫什么
  • 桐乡网站设计公司指数基金投资指南
  • 小程序开发制作多少钱sem 优化软件
  • 傻瓜式大型网站开发工具线上推广策划方案范文
  • 国内便宜机票网站建设百度关键词排名点
  • 电脑系统网站建设怎么在百度上投放广告
  • 南川网站制作常见的推广方式有哪些