当前位置: 首页 > news >正文

北京做网站的外包公司泉州百度推广咨询

北京做网站的外包公司,泉州百度推广咨询,时时彩网站开发需要多少钱,淘宝客网站建设要注意什么图(Graph)是一种非常灵活且强大的数据结构,用于表示实体之间的复杂关系。在图结构中,数据由一组节点(或称为顶点)和连接这些节点的边组成。图可以用于表示社交网络、交通网络、网络路由等场景。 1. 基本概…

        图(Graph)是一种非常灵活且强大的数据结构,用于表示实体之间的复杂关系。在图结构中,数据由一组节点(或称为顶点)和连接这些节点的边组成。图可以用于表示社交网络、交通网络、网络路由等场景。

1. 基本概念

  • 节点(Vertex):图中的一个点,代表一个对象或实体。

  • 边(Edge):连接两个节点的线,代表节点之间的关系。

  • 邻接(Adjacency):如果两个节点之间有边相连,则称这两个节点是邻接的。

  • 路径(Path):一系列相连的边,从一个节点开始,经过若干个中间节点,到达另一个节点。

  • 环(Cycle):起点和终点是同一个节点的路径。

  • 连通图(Connected Graph):图中任意两个节点之间都存在路径。

  • 强连通图(Strongly Connected Graph):有向图中,任意两个节点之间都存在有向路径。

  • 树(Tree):一种特殊的图,没有环,且任意两个节点之间只有一条路径。

2. 表示方法

2.1 邻接矩阵(Adjacency Matrix)

  • 使用一个二维数组来表示图,数组的行和列代表节点,元素值表示节点之间是否有边。

  • 适用于稠密图,即边的数量接近节点数量平方的图。

2.2 邻接表(Adjacency List)

  • 使用一个链表数组来表示图,每个链表包含与该节点相连的所有节点。

  • 适用于稀疏图,即边的数量远小于节点数量平方的图。

3. 遍历算法

3.1 深度优先搜索(Depth-First Search, DFS)

  • 类似于树的前序遍历,使用栈(递归或显式栈)来实现。

  • 从任意节点开始,尽可能深地搜索图的分支。

 
public class GraphDFS {private int V; // 节点数private LinkedList<Integer> adj[]; // 邻接表// 构造函数@SuppressWarnings("unchecked")public GraphDFS(int v) {V = v;adj = new LinkedList[v];for (int i = 0; i < v; ++i)adj[i] = new LinkedList();}// 添加边public void addEdge(int v, int w) {adj[v].add(w); // 添加w到v的邻接表}// DFS算法public void DFS(int v) {boolean visited[] = new boolean[V];// 调用递归的DFS函数DFSUtil(v, visited);}// 递归的DFS函数void DFSUtil(int v, boolean visited[]) {// 标记当前节点为已访问visited[v] = true;System.out.print(v + " ");// 递归访问所有未访问的邻接节点for (int i = 0; i < adj[v].size(); i++) {int n = adj[v].get(i);if (!visited[n])DFSUtil(n, visited);}}// 测试DFS算法public static void main(String[] args) {GraphDFS g = new GraphDFS(4);g.addEdge(0, 1);g.addEdge(0, 2);g.addEdge(1, 2);g.addEdge(2, 0);g.addEdge(2, 3);g.addEdge(3, 3);System.out.println("DFS starting from vertex 2 : ");g.DFS(2);}
}

3.2 广度优先搜索(Breadth-First Search, BFS)

  • 类似于树的层序遍历,使用队列来实现。

  • 从任意节点开始,逐层遍历图中的节点。

 
import java.util.*;public class GraphBFS {private int V; // 节点数private LinkedList<Integer> adj[]; // 邻接表// 构造函数@SuppressWarnings("unchecked")public GraphBFS(int v) {V = v;adj = new LinkedList[v];for (int i = 0; i < v; ++i)adj[i] = new LinkedList();}// 添加边public void addEdge(int v, int w) {adj[v].add(w); // 添加w到v的邻接表}// BFS算法public void BFS(int s) {boolean visited[] = new boolean[V];// 创建一个队列用于BFSQueue<Integer> queue = new LinkedList<>();// 标记起始节点为已访问并入队visited[s] = true;queue.add(s);while (queue.size() != 0) {// 出队一个节点s = queue.poll();System.out.print(s + " ");// 访问其所有未访问的邻接节点for (int i = 0; i < adj[s].size(); ++i) {int n = adj[s].get(i);if (!visited[n]) {visited[n] = true;queue.add(n);}}}}// 测试BFS算法public static void main(String[] args) {GraphBFS g = new GraphBFS(4);g.addEdge(0, 1);g.addEdge(0, 2);g.addEdge(1, 2);g.addEdge(2, 0);g.addEdge(2, 3);g.addEdge(3, 3);System.out.println("BFS starting from vertex 2 : ");g.BFS(2);}
}

4. 算法应用

  1. 最短路径问题

    1. Dijkstra算法:适用于带有非负权重的图。

    2. Bellman-Ford算法:适用于带有负权重的图。

    3. Floyd-Warshall算法:计算图中所有节点对的最短路径。

  2. 最小生成树问题

    1. Kruskal算法:贪心算法,适用于边的集合是无序的。

    2. Prim算法:贪心算法,适用于节点的集合是无序的。

  3. 网络流问题

    1. Ford-Fulkerson方法:计算网络中的最大流。

    2. Edmonds-Karp算法:使用BFS来实现Ford-Fulkerson方法。

http://www.yidumall.com/news/73926.html

相关文章:

  • 什么软件做网站比较好云计算培训费用多少钱
  • 专业网站建设公司网络推广有哪些渠道
  • dw做网站教程吉林网络seo
  • 北京市建设教育协会网站查询石家庄seo排名公司
  • 响应式网页模版重庆seo网站推广费用
  • 天津建设人才网官网seo标签优化
  • 渭南网站建设与维护windows优化大师是什么
  • php网站怎么做post订单营销网站建设方案
  • 公关策划网站建设企业推广宣传方案
  • 百度seo最新算法郑州网站seo推广
  • 网上做一道题2元的网站深圳网络营销推广服务
  • 关于网站平台建设调研的函nba最新新闻
  • 广州做动态网站的公司新网站如何快速收录
  • 武汉做网站哪家公司好广告软文范例大全100
  • 天骏手表网站产品关键词大全
  • 佛山专业网站建设团队长沙网站定制
  • 高端文化网站模板爱链工具
  • 做自己网站做站长网站推广内容
  • b2c电商企业有哪些营销网站优化推广
  • 做网站多少费用陕西seo排名
  • 佛山营销型网站大数据精准获客软件
  • 为赌博网站做网络维护网络营销推广的方法有哪些
  • 路由器统一登录网站关于搜索引擎的搜索技巧
  • 网站设计的公司北京阿里云万网域名查询
  • 石家庄网站建设服务互联网推广中心
  • 易语言可以做网站了吗百度广告位价格
  • 政务网站建设索引网络营销案例实例
  • 漳州市网站建设费用手机怎么搭建网站
  • 英文网站排版百度搜索排名优化哪家好
  • vi品牌形象设计案例优化大师免费版