当前位置: 首页 > news >正文

动易企业网站百度手机助手

动易企业网站,百度手机助手,比较知名的设计网站有哪些,河南网站建设最近我用python处理excel,使用的是pandas库,我发现pandas库非常占用内存,一直想研究下如何优化pandas的内存占用,但一直没腾出空来,最近终于有时间研究一把了,我先把优化方法写上,如果你想了解更…

        最近我用python处理excel,使用的是pandas库,我发现pandas库非常占用内存,一直想研究下如何优化pandas的内存占用,但一直没腾出空来,最近终于有时间研究一把了,我先把优化方法写上,如果你想了解更多的内容,可以看一下XX这篇文章,我优化的思路来源https://www.sohu.com/a/484114754_121124370这篇文章。

        以下直接提供了优化方法,如果你想知道为什么这么做,可以参考我的另一篇文章链接: python pandas 优化内存占用(二)

1.优化结果

1.1 优化前

        我优化的是一个20万行,88列的excel文件,源文件有76.59M,因为业务敏感性的原因,源文件我不能贴出来。
        先看一下优化之前excel占用了多少内存

# <class 'pandas.core.frame.DataFrame'>
# RangeIndex: 200000 entries, 0 to 199999
# Data columns (total 88 columns):
#  #   Column           Non-Null Count   Dtype
# ---  ------           --------------   -----
#  0   column0          200000 non-null  int64
#  1   column1        200000 non-null  object
#  2   column2          200000 non-null  int64
......
#  85  column85            199963 non-null  float64
#  86  column86            199963 non-null  object
#  87  column87         199963 non-null  float64
# dtypes: float64(14), int64(3), object(71)
# memory usage: 965.9 MB

        上面的输出我精简了一下,从上边的输出可以看出,我的excel文件有200000行,88列,其中有14个float64类型的列,3个int64类型的列,71个ojbect类型的列,总共占用内存965.9M。

        上面的输出是使用如下的代码得到的。

gl.info(memory_usage='deep')

1.2 优化后

# <class 'pandas.core.frame.DataFrame'>
# RangeIndex: 200000 entries, 0 to 199999
# Data columns (total 88 columns):
#  #   Column           Non-Null Count   Dtype
# ---  ------           --------------   -----
#  0   column0          200000 non-null  uint64
#  1   column1        200000 non-null  object
#  2   column2          200000 non-null  uint64
......
#  84  是否小区             199963 non-null  category
#  85  column85            199963 non-null  category
#  86  column86            199963 non-null  category
#  87  column87         199963 non-null  category
# dtypes: category(81), object(5), uint64(2)
# memory usage: 143.8 MB

        同样,我把优化后的输出也精简了一下,从上边的输出可以看出,我这个200000行,88列的excel文件优化后占用内存143.8M,优化效果还是非常明显的。
        细心的小伙伴可能注意到一个问题,优化后,我的execl文件的列类型变化了,优化前有14个float64类型的列,3个int64类型的列,71个ojbect类型的列;优化后变成了81个category类型的列,5个object类型列,2个uint64类型的列。没错,正如你看到的,这就是优化的秘密,为什么这样可以优化内存使用,可以参看我的另一篇文章,下面我讲一下我是如何做到的。

2. 优化方法

        正如小伙伴在上文中看到的,要想优化excel的内存占用大小,一个重要的思路是改变excel的列类型,如何获取优化后的列类型呢,代码如下

import pandas as pd
# 把excel中的数据类型转化成优化后的数据类型
def convert_to_right_type():# 读取文件gl = pd.read_excel("xx.xlsx")# 初始化一个DataFrameconverted_obj = pd.DataFrame()# 计算哪些列类型可以转换成category类型for col in gl.columns:num_unique_values = len(gl[col].unique())num_total_values = len(gl[col])if num_unique_values / num_total_values < 0.5:converted_obj.loc[:, col] = gl[col].astype('category')else:converted_obj.loc[:, col] = gl[col]# 计算哪些int类型列可以downcast成子类型gl_int = converted_obj.select_dtypes(include=['int'])converted_int = gl_int.apply(pd.to_numeric, downcast='unsigned')# 将转换后的int类型列合并回converted_objfor col in converted_int.columns:converted_obj[col] = converted_int[col]# 计算哪些float类型列可以downcast成子类型gl_float = converted_obj.select_dtypes(include=['float'])converted_float = gl_float.apply(pd.to_numeric, downcast='float')# 将转换后的 float 类型列合并回converted_objfor col in converted_float.columns:converted_obj[col] = converted_float[col]# 获取数据类型索引(索引是列名,值是数据类型)dtypes = converted_obj.dtypes# 获取列名dtypes_col = dtypes.index# 获取数据类型的名称dtypes_type = [i.name for i in dtypes.values]# 列名和类型字典column_types = dict(zip(dtypes_col, dtypes_type))# preview = {key: value for key, value in list(column_types.items())[:20]}# 获取字典preview = {key: value for key, value in list(column_types.items())}# 格式化输出, 使每个嵌套层级的缩进量为4个空格pp = pprint.PrettyPrinter(indent=4)# 打印字典pp.pprint(preview)

        这段儿代码的输出类似如下:

column_types = {'column1': 'category','column2': 'uint64','column3': 'object','column4': 'uint64','column5': 'category'}

        column_type 是个字典,它的key是excel文件的列名称,value是excel文件列对应的优化后的类型。

        在读取excel的时候,指定excel的dtype,即可按照指定的列类型读取excel,类似这样

gl = pd.read_excel("XX.xlsx", dtype=column_types)

3. 测试方法

        我是用如下的代码测试excel占用内存的大小的

# 测试内存占用
def mem_usage(pandas_obj):if isinstance(pandas_obj, pd.DataFrame):usage_b = pandas_obj.memory_usage(deep=True).sum()else:  # we assume if not a df it's a seriesusage_b = pandas_obj.memory_usage(deep=True)usage_mb = usage_b / 1024 ** 2  # convert bytes to megabytesreturn "{:03.2f} MB".format(usage_mb)
http://www.yidumall.com/news/73323.html

相关文章:

  • 邵阳网站优化问卷调查网站
  • 响应式网站建设方案网店推广的重要性
  • 路由器上建网站seo实战优化
  • wordpress remal大兵seo博客
  • 申请做版主 再什么网站seo搜索引擎优化排名哪家更专业
  • 如何做和别人一样的网站站长统计 网站统计
  • 学做立体书的网站百度搜索引擎原理
  • 车务网站开发北京seo邢云涛
  • 做网站开发的女生多吗百度链接提交入口
  • 做收集信息的网站网站建设公司哪家好?该如何选择
  • 免费做公益网站百度高级搜索功能
  • 保险网站建设郑州seo优化
  • 网站建设平台多少钱怎么在百度投放广告
  • wordpress的菜单静态怎么做神马搜索排名seo
  • 网站建设方案的重要性济南seo网站排名关键词优化
  • 做公司网站协议书模板下载从事网络营销的公司
  • 网站动态交互北京百度竞价
  • 国内做网站公司排名百度地图排名可以优化吗
  • 网站程序源码上传到空间打开网站首页还是显示的程序原源代码如何刷seo关键词排名
  • 如何提高网站的收录网站代搭建维护
  • 南宁网站seo长沙关键词优化推荐
  • 和规划网站如何武汉网站建设公司
  • wordpress添加自定义tag标签seo官网优化怎么做
  • 新乡做网站的公司泉州百度首页优化
  • 直播视频网站优化方案怎么写
  • 租木模板多少钱一平方如何做seo搜索优化
  • 使用vue做简单网站教程网站怎么制作教程
  • 淘客网站添加到桌面新网站多久会被百度收录
  • 韶关做网站的公司怎么找百度客服
  • 做网站什么什么就在刚刚武汉宣布最新消息