当前位置: 首页 > news >正文

怎么做劳务公司网站旺道seo推广效果怎么样

怎么做劳务公司网站,旺道seo推广效果怎么样,江西省外省建设入库网站,专门做店铺转让的网站目录 01 学习目标 02 实现工具 03 概念与原理 04 应用示例 05 总结 01 学习目标 (1)理解二分类与多分类的原理区别 (2)掌握简单多分类问题的神经网络实现方法 (3)理解多分类问题算法中的激活函数与损失…

目录

01 学习目标

02 实现工具

03 概念与原理

04 应用示例

05 总结


01 学习目标

     (1)理解二分类与多分类的原理区别

     (2)掌握简单多分类问题的神经网络实现方法

     (3)理解多分类问题算法中的激活函数与损失函数原理

02 实现工具

     (1)代码运行环境

              Python语言,Jupyter notebook平台

     (2)所需模块

              numpy,matplotlib,tensorflow,lab_utils_multiclass_TF,logging

03 概念与原理

     (1)二分类&多分类

       二分类将输入数据划分为两个不同类别,目标变量为一维(0或1)。比如:判断一封电子邮件是否为垃圾邮件(是/否)、判断一个用户是否会点击某个广告或链接(会/不会)等。

       多分类将输入数据划分为三个及以上不同类别,目标变量为一维或更高维。比如:图像识别、文本分类等。

       二分类与多分类都是分类问题,本质上都是经过逻辑分析进行处理。相较二分类的“一对一(0&1)”逻辑,多分类多了一层逻辑,其逻辑处理有“一对一(0或1)”和“一对多(0&1/2/3/4…)”两种策略。如下图所示:

图1   “一对一”策略

 图2   “一对多”策略

       由图1和2可知,假设目标有n类,“一对一”策略需要n×(n-1)次分类,而“一对多”策略仅需要n次分类。

      (2)神经网络中的激活函数 & 归一化指数函数(SoftMax函数)

         激活函数负责将神经元的输入映射到输出端,位于隐藏层的神经元内。作用:引入非线性以处理现实复杂问题。

         SoftMax函数负责处理输出层神经元的输出结果,位于模型编译过程中、损失函数内。作用:将输出层数值处理为 [0,1]范围内的概率分布,用于预测。

      (3)SoftMax函数及其损失函数的数学原理

        对于输出结果向量\textbf{z}=[z_1,z_2,\cdots ,z_n]^TSoftMax函数:

\textbf{a}=\frac{1}{\sum_{k=1}^{n}e^{z_k}}\begin{bmatrix} e^{z_1}\\ e^{z_2}\\ \cdots \\ e^{z_n} \end{bmatrix}

        对于SoftMax处理后的数值,采用交叉熵损失函数:

 L(\textbf{a},y)=\left\{\begin{matrix} -log(a_1),\textbf{if} y=1\\ -log(a_2),\textbf{if} y=2\\ \cdots \\ -log(a_n),\textbf{if} y=n \end{matrix}\right.

       成本函数:

J(\textbf{w},b)=-[\sum_{i=1}^{m}\sum_{j=1}^{n}\begin{Bmatrix} y^{(i)}==j \end{Bmatrix}log\frac{e^{z^{(i)}_j}}{\sum_{k=1}^{n}e^{z^{(i)}_k}}]

      然而,实际项目中可能遇到比较大的数值,SoftMax函数第1步会先进行指数计算(即e^x),这往往造成内存溢出无法计算。因此,可对SoftMax函数及其损失函数进行算法优化:

      本质为取C=\textbf{z}_{max}进行归一化预处理,具体推导过程如下:

       优化后的SoftMax函数如下:

\textbf{a}=\frac{1}{\sum_{k=1}^{n}e^{z_k-C}}\begin{bmatrix} e^{z_1-C}\\ e^{z_2-C}\\ \cdots \\ e^{z_n-C} \end{bmatrix}

       优化后的第k类的损失函数为:

L(\textbf{z})=C+log(\sum_{i=1}^{n}e^{z_i-C})-z_k

       式中,C=\textbf{z}_{max}k为目标值(类别),即y=k,总共有n类。

04 应用示例

     (1)示例描述

       采用sklearn库中的make_blobs函数随机生成4类共2000个数据点,然后基于这4类数据,采用人工神经网络对其进行分类并可视化。

    (2)代码实现

      第1步,导入所需模块:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib widget
from sklearn.datasets import make_blobs
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
np.set_printoptions(precision=2)
from lab_utils_multiclass_TF import *
import logging
logging.getLogger("tensorflow").setLevel(logging.ERROR)
tf.autograph.set_verbosity(0)

      第2步,生成数据:

centers = [[-5, 2], [-2, -2], [1, 2], [5, -2]]  # 4个类中心
X_train, y_train = make_blobs(n_samples=2000, centers=centers, cluster_std=1.0,random_state=30)

      第3步,定义框架、编译模型、训练模型:

model = Sequential([ Dense(25, activation = 'relu'),Dense(15, activation = 'relu'),Dense(4, activation = 'linear')    # < softmax activation here]
)
model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),optimizer=tf.keras.optimizers.Adam(0.001),
)model.fit(X_train,y_train,epochs=100
)

     第4步,结果显示:

plt_cat_mc(X_train, y_train, model, 4)

       运行以上代码,结果如下:

05 总结

     (1)多分类的本质是二分类,基本原理是逻辑回归。

     (2)采用Softmax需在损失函数中定义,并需输出层以激活函数linear配合。

     (3)二分类输出层的神经元个数为1,多分类问题输出层神经元个数为类别个数,若类数未知则可通过试算确定。

http://www.yidumall.com/news/70729.html

相关文章:

  • wordpress json api 插件搜索引擎优化seo专员
  • 广西外贸app优化seo厂家
  • 东莞建设工程检测中心网站搜索引擎付费推广
  • p2p网站开发文档深圳网站建设服务
  • 集团网站建设价格ciliba最佳磁力搜索引擎
  • 网站建设需经历的步骤漯河网络推广哪家好
  • wordpress 母婴免费的seo网站下载
  • 在东莞做网站网站建设平台软件
  • 企业官网定制设计开发青岛网站关键词优化公司
  • 浦西网站建设网站怎么优化排名靠前
  • 德州市建设街派出所网站搜索引擎是什么意思啊
  • 江苏省灌云建设局5.0网站今日头条荆州新闻
  • 建设网站外国人可搜到宿迁网站建设制作
  • 深圳网站建设 排行榜如何搭建企业网站
  • 合肥专业网站建设seo专业技术培训
  • 17网站一起做网店潮汕外贸营销型网站
  • 做百度竞价网站搜索不到seo入门培训学多久
  • 上海网站开发多少钱创建网站的公司
  • 西城区住房和城乡建设委员会网站谷歌浏览器下载安卓版
  • 网站建设电话销售说不需要博客是哪个软件
  • 厦门做网站优化哪家好西安百度推广联系方式
  • 容桂销售型网站建设临沂google推广
  • 宣城市网站集约化建设长安网站优化公司
  • 上海网站制作公司哪家白杨seo
  • wordpress加首页seo基础优化包括哪些内容
  • 连云港市网站设计百度网盘电脑网页版
  • vps做网站需要做哪些准备网络营销是什么专业类别
  • python做网站好不好网站免费seo
  • 网站建设思路方案省好多会员app
  • 产品review网站怎么做aso优化推广