当前位置: 首页 > news >正文

网站的二级菜单怎么做优化方法

网站的二级菜单怎么做,优化方法,六安seo曝光行者seo,天眼官方网站基于卷积神经网络增强微光图像 0. 前言1. MBLLEN 网络架构2. 增强微光图像小结系列链接 0. 前言 在本节中,我们将学习如何基于预训练的深度学习模型执行微光/夜间图像增强。由于难以同时处理包括亮度、对比度、伪影和噪声在内的所有因素,因此微光图像增…

基于卷积神经网络增强微光图像

    • 0. 前言
    • 1. MBLLEN 网络架构
    • 2. 增强微光图像
    • 小结
    • 系列链接

0. 前言

在本节中,我们将学习如何基于预训练的深度学习模型执行微光/夜间图像增强。由于难以同时处理包括亮度、对比度、伪影和噪声在内的所有因素,因此微光图像增强一直是一项具有挑战性的问题。为了解决这一问题,提出了多分支微光增强网络 (multi-branch low-light enhancement network, MBLLEN),其关键思想是提取不同尺度的丰富特征,以便可以通过多个子网应用图像增强。最后,通过多分支融合生成输出图像,采用这种方式图像质量得到了极大的提高。

1. MBLLEN 网络架构

MBLLEN 深度神经网络的架构图如下所示:

MBLLEN 网络架构
MBLLEN 由以下三种模块组成:

  • 特征提取模块 (feature extraction module, FEM)
  • 增强模块 (enhancement module, EM)
  • 融合模块 (fusion module, FM)

网络的关键是学习以下内容:

  • 通过 FEM 提取不同尺度的丰富特征
  • 通过 EM 分别增强多尺度特征
  • 通过 FM 多分支融合获得最终输出

2. 增强微光图像

(1) 下载预训练的模型(也可以通过 gitcode 下载),导入库、模块和函数:

import tensorflow as tf
import numpy as np
from skimage.io import imread
import matplotlib.pylab as plt
from tensorflow.keras.layers import Input, Conv2D, Conv2DTranspose, Concatenate
from tensorflow.keras.applications.vgg19 import VGG19
from tensorflow.keras.models import Model

(2) 定义函数 build_mbllen(),该函数定义模型、创建模型实例并返回模型。增强模块使用四个堆叠的 Conv2D 层,然后使用三个 tensorflow.keras.layers 模块中的 Conv2DTranspose 层,输入图像的颜色通道需要作为输入张量的最后一个维度:

def build_mbllen(input_shape):def EM(input, kernal_size, channel):conv_1 = Conv2D(channel, (3, 3), activation='relu', padding='same', data_format='channels_last')(input)conv_2 = Conv2D(channel, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_1)conv_3 = Conv2D(channel*2, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_2)conv_4 = Conv2D(channel*4, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_3)conv_5 = Conv2DTranspose(channel*2, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_4)conv_6 = Conv2DTranspose(channel, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_5)res = Conv2DTranspose(3, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_6)return resinputs = Input(shape=input_shape)FEM = Conv2D(32, (3, 3), activation='relu', padding='same', data_format='channels_last')(inputs)EM_com = EM(FEM, 5, 8)for j in range(3):for i in range(0, 3):FEM = Conv2D(32, (3, 3), activation='relu', padding='same', data_format='channels_last')(FEM)EM1 = EM(FEM, 5, 8)EM_com = Concatenate(axis=3)([EM_com, EM1])outputs = Conv2D(3, (1, 1), activation='relu', padding='same', data_format='channels_last')(EM_com)return Model(inputs, outputs)

(3) 通过调用函数 build_mbllen() 获取模型实例,从下载的预训练模型文件中加载预训练权重(参数值):

mbllen = build_mbllen((None, None, 3))
mbllen.load_weights('LOL_img_lowlight.h5') 

(4) 使用 scikit-image.io 模块的 imread() 函数读取输入微光图像。需要注意的是,输入图像的像素值在 [0, 255] 范围内,而模型期望其输入在范围 [0, 1] 内,因此我们需要缩放图像;另外,我们需要使用 np.newaxis 扩展输入维度,因为模型期望输入尺寸为 1 x h x w x c,其中 hwc 分别表示图像的高度、宽度和颜色通道;调用模型的 predict() 方法,使用输入图像执行前向传播,获得增强的输出图像:

img = imread('Lighthouse_under.png')
print(img.max())
out_pred = mbllen.predict(img[np.newaxis, :] / 255)
out = out_pred[0, :, :, :3]

(5) 最后,使用 matplotlib.pyplot 绘制微光输入图像和增强后的输出图像:

def plot_image(image, title=None, sz=10):plt.imshow(image)plt.title(title, size=sz)plt.axis('off')plt.figure(figsize=(20,10))
plt.subplot(121), plot_image(img, 'low-light input')
plt.subplot(122), plot_image(np.clip(out, 0, 1), 'enhanced output')
plt.tight_layout()
plt.show()

增强微光图像

小结

由于难以同时处理包括亮度、对比度、伪影和噪声在内的各种因素,微光图像增强问题是一项具有挑战性的任务。本节中,我们介绍了一种基于深度卷积神经网络的微光图像增强模型,多分支微光增强网络 (multi-branch low-light enhancement network, MBLLEN)。MBLLEN 的关键思想是提取不同尺度图像的丰富特征,以便我们可以通过多个子网应用图像增强,并最终通过多分支融合生成输出图像,从不同尺度的多个方面上改善图像质量。

系列链接

Python图像处理【1】图像与视频处理基础
Python图像处理【2】探索Python图像处理库
Python图像处理【3】Python图像处理库应用
Python图像处理【4】图像线性变换
Python图像处理【5】图像扭曲/逆扭曲
Python图像处理【6】通过哈希查找重复和类似的图像
Python图像处理【7】采样、卷积与离散傅里叶变换
Python图像处理【8】使用低通滤波器模糊图像
Python图像处理【9】使用高通滤波器执行边缘检测
Python图像处理【10】基于离散余弦变换的图像压缩
Python图像处理【11】利用反卷积执行图像去模糊
Python图像处理【12】基于小波变换执行图像去噪
Python图像处理【13】使用PIL执行图像降噪
Python图像处理【14】基于非线性滤波器的图像去噪
Python图像处理【15】基于非锐化掩码锐化图像
Python图像处理【16】OpenCV直方图均衡化
Python图像处理【17】指纹增强和细节提取
Python图像处理【18】边缘检测详解
Python图像处理【19】基于霍夫变换的目标检测
Python图像处理【20】图像金字塔

http://www.yidumall.com/news/69566.html

相关文章:

  • 自己做视频网站能赚钱吗系统优化app
  • 苏州网站建设规划大数据营销专业
  • 无锡做网站哪里好营销方案范文
  • 用网站名查询网址海南百度推广总代理商
  • 做海淘的网站做海淘的网站全媒体运营师报名入口
  • 网页制作与网站发布微信群发软件
  • 有什么手机做网站的cpu优化软件
  • 淘宝客必须做网站seo排名优化软件
  • 利用网上菜谱做网站深圳网站关键词
  • 服装图案素材网站外包公司排名
  • 海外访问国内网站 dns抚顺网站建设
  • 如何利用网站模板做网站怎么做网页设计的页面
  • 网站开发竞争对手分析百度帐号管家
  • 网站开发典型佛山百度快速排名优化
  • wordpress修改域名文件武汉seo网络营销推广
  • 找做帽子的工厂网站如何做网站优化
  • 文具用品网站设计规划书北京优化推广公司
  • 湘潭网站建设方案表格北京软件培训机构前十名
  • 程序员培训班杭州seo排名优化外包
  • 成都找人做网站seo整站优化哪家专业
  • 惠阳网站优化整合营销案例
  • 网络营销咨询网站源码简述网络营销的概念
  • 广东专业做网站排名公司百度爱采购平台官网
  • 在地税网站怎么做税种认定百度免费广告发布平台
  • 关于酒店网站建设的摘要头条搜索站长平台
  • thinkphp做网站教程培训机构招生方案
  • 哪个网站能在线做司考题目百度网址怎么输入?
  • 互联网营销网站建设手机网页设计制作网站
  • 大型企业门户网站能力建设探索与实践百度营销推广官网
  • 做兼职一般去哪个网站seo关键词排名优化怎么收费