当前位置: 首页 > news >正文

实验一 电子商务网站建设与维护网络推广的概念

实验一 电子商务网站建设与维护,网络推广的概念,深圳新闻网首页,wordpress 更好 知乎Transformer 编码器深度解读 代码实战 1. 编码器核心作用 Transformer 编码器的核心任务是将输入序列(如文本、语音)转换为富含上下文语义的高维特征表示。它通过多层自注意力(Self-Attention)和前馈网络(FFN&#x…

Transformer 编码器深度解读 + 代码实战


1. 编码器核心作用

Transformer 编码器的核心任务是将输入序列(如文本、语音)转换为富含上下文语义的高维特征表示。它通过多层自注意力(Self-Attention)和前馈网络(FFN),逐步建模全局依赖关系,解决传统RNN/CNN的长距离依赖缺陷。


2. 编码器单层结构详解

每层编码器包含以下模块(附 PyTorch 代码):

2.1 多头自注意力(Multi-Head Self-Attention)
class MultiHeadAttention(nn.Module):def __init__(self, embed_size, heads):super().__init__()self.embed_size = embed_sizeself.heads = headsself.head_dim = embed_size // heads# 线性变换层生成 Q, K, Vself.to_qkv = nn.Linear(embed_size, embed_size * 3)  # 同时生成 Q/K/Vself.scale = self.head_dim ** -0.5  # 缩放因子# 输出线性层self.to_out = nn.Linear(embed_size, embed_size)def forward(self, x, mask=None):batch_size, seq_len, _ = x.shape# 生成 Q, K, V 并分割多头qkv = self.to_qkv(x).chunk(3, dim=-1)  # 拆分为 [Q, K, V]q, k, v = map(lambda t: t.view(batch_size, seq_len, self.heads, self.head_dim), qkv)# 计算注意力分数 (QK^T / sqrt(d_k))attn = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale# 掩码(编码器通常不需要,但保留接口)if mask is not None:attn = attn.masked_fill(mask == 0, -1e10)# Softmax 归一化attn = torch.softmax(attn, dim=-1)# 加权求和out = torch.einsum('bhij,bhjd->bhid', attn, v)out = out.reshape(batch_size, seq_len, self.embed_size)# 输出线性变换return self.to_out(out)

代码解析

  • nn.Linear 生成 Q/K/V 矩阵,通过 chunk 分割。
  • einsum 实现高效矩阵运算,计算注意力分数。
  • 支持掩码(虽编码器通常不用,但为兼容性保留)。

2.2 前馈网络(Feed-Forward Network)
class FeedForward(nn.Module):def __init__(self, embed_size, expansion=4):super().__init__()self.net = nn.Sequential(nn.Linear(embed_size, embed_size * expansion),  # 扩展维度nn.GELU(),  # 更平滑的激活函数(比ReLU效果更好)nn.Linear(embed_size * expansion, embed_size)   # 压缩回原维度)def forward(self, x):return self.net(x)

代码解析

  • 典型结构:扩展维度(如512→2048)→激活→压缩回原维度。
  • 使用 GELU 替代 ReLU(现代Transformer的常见选择)。

2.3 残差连接 + 层归一化(Add & Norm)
class TransformerEncoderLayer(nn.Module):def __init__(self, embed_size, heads, dropout=0.1):super().__init__()self.attn = MultiHeadAttention(embed_size, heads)self.ffn = FeedForward(embed_size)self.norm1 = nn.LayerNorm(embed_size)self.norm2 = nn.LayerNorm(embed_size)self.dropout = nn.Dropout(dropout)def forward(self, x):# 自注意力子层attn_out = self.attn(x)x = x + self.dropout(attn_out)  # 残差连接x = self.norm1(x)# 前馈子层ffn_out = self.ffn(x)x = x + self.dropout(ffn_out)   # 残差连接x = self.norm2(x)return x

代码解析

  • 每个子层后执行 x = x + dropout(sublayer(x)),再层归一化。
  • 残差连接确保梯度稳定,层归一化加速收敛。

3. 位置编码(Positional Encoding)
class PositionalEncoding(nn.Module):def __init__(self, embed_size, max_len=5000):super().__init__()pe = torch.zeros(max_len, embed_size)position = torch.arange(0, max_len).unsqueeze(1)div_term = torch.exp(torch.arange(0, embed_size, 2) * (-math.log(10000.0)/embed_size)pe[:, 0::2] = torch.sin(position * div_term)  # 偶数位置pe[:, 1::2] = torch.cos(position * div_term)  # 奇数位置self.register_buffer('pe', pe.unsqueeze(0))   # (1, max_len, embed_size)def forward(self, x):return x + self.pe[:, :x.size(1)]  # 自动广播到 (batch_size, seq_len, embed_size)

代码解析

  • 通过正弦/余弦函数编码绝对位置。
  • register_buffer 将位置编码注册为模型常量(不参与训练)。

4. 完整编码器实现
class TransformerEncoder(nn.Module):def __init__(self, vocab_size, embed_size, layers, heads, dropout=0.1):super().__init__()self.embedding = nn.Embedding(vocab_size, embed_size)self.pos_encoding = PositionalEncoding(embed_size)self.layers = nn.ModuleList([TransformerEncoderLayer(embed_size, heads, dropout)for _ in range(layers)])def forward(self, x):# 输入x形状: (batch_size, seq_len)x = self.embedding(x)  # (batch_size, seq_len, embed_size)x = self.pos_encoding(x)for layer in self.layers:x = layer(x)return x  # (batch_size, seq_len, embed_size)

5. 实战测试

# 参数设置
vocab_size = 10000  # 假设词表大小
embed_size = 512    # 嵌入维度
layers = 6          # 编码器层数
heads = 8           # 注意力头数# 初始化模型
encoder = TransformerEncoder(vocab_size, embed_size, layers, heads)# 模拟输入(batch_size=32, seq_len=50)
x = torch.randint(0, vocab_size, (32, 50))  # 随机生成句子# 前向传播
output = encoder(x)
print(output.shape)  # 预期输出: torch.Size([32, 50, 512])

http://www.yidumall.com/news/68672.html

相关文章:

  • 常熟网站建设哪家好友情链接平台站长资源
  • 兰州企业 网站建设如何写软文
  • 大学生做家教网站各大网站提交入口
  • html中文网页模板素材广州网站营销优化qq
  • 网站可能存在什么问题吗关键词排名手机优化软件
  • 温州网站建设推广网页制作培训教程
  • 网站制作详细教程电子商务网站开发
  • 网站开发工程师岗位职责说明书ttkefu在线客服系统官网
  • 怎么创建一个网站卖东西怎样在百度上注册自己的店铺
  • 沈阳男科医院哪家医院好重庆seo搜索引擎优化优与略
  • 建设银行信用卡官网站首页网络推广赚钱
  • 网站建设0基础学起seo优化公司
  • 做我网站网络营销是什么
  • 中国网站域名备案管理系统打开百度官网
  • 漳州做网站多少钱网络推广营销培训机构
  • 重庆市建设安全监督站的网站深圳关键词推广整站优化
  • 网站申请了如何上传到服务器河南推广网站
  • 网页搭建服务平台seo工具查询
  • 营销自动化平台搜索引擎关键词排名优化
  • 网站初期内容百度权重是什么意思
  • 怎么做网站能够增加人气推广普通话手抄报简单
  • 自己做的影视会员网站违法么济南网络seo公司
  • 网站建设是基于seo快速排名利器
  • 用一个域名免费做网站网上销售推广方案
  • 网站开发人员是干嘛的磁力链最好用的搜索引擎
  • 做视频网站靠什么赚钱吗app软件开发制作公司
  • 网站制作开发及优化是什么seo运营是什么意思
  • 阿里巴巴国际站首页苏州关键词排名提升
  • 全面的手机网站建设链接
  • crm客户管理系统哪个好seo怎么做优化计划