当前位置: 首页 > news >正文

搭建cms网站免费网站推广软件下载

搭建cms网站,免费网站推广软件下载,网站建设分享,京东做代码的网站吗费舍尔信息矩阵(Fisher Information Matrix) 费舍尔信息矩阵是统计学中一个非常重要的概念,尤其在参数估计、最大似然估计(MLE)和贝叶斯推断中具有广泛的应用。它反映了参数估计的不确定性程度,也可以用来…

费舍尔信息矩阵(Fisher Information Matrix)

费舍尔信息矩阵是统计学中一个非常重要的概念,尤其在参数估计、最大似然估计(MLE)和贝叶斯推断中具有广泛的应用。它反映了参数估计的不确定性程度,也可以用来衡量数据提供了多少关于参数的信息。

1. 费舍尔信息的基本概念

在统计学中,给定一个模型,模型的参数往往是我们感兴趣的未知量。费舍尔信息矩阵量化了模型参数的可估计性,即参数的估计值相对于真实值的精确度。费舍尔信息越大,表示数据对于估计这些参数的"信息"越多,估计的精度越高;反之,费舍尔信息越小,参数的估计就越不精确。

定义: 费舍尔信息矩阵是基于对数似然函数的二阶导数的期望值。对于参数向量\theta =(\theta _{1},\theta _{2},\cdots ,\theta _{k}),费舍尔信息矩阵 I(\theta ) 是一个 k×k 的矩阵,其中每个元素是参数对数似然函数的二阶偏导数的期望。

具体而言,假设有一个观测数据集 X=(X_{1},X_{2},\cdots ,X_{n}),其联合概率密度函数(或概率质量函数)为 p(X;\theta ),其中 \theta 是待估计的参数,费舍尔信息矩阵的定义为:

I(\theta )=-E[\frac{\partial^{2} }{\partial \theta ^{2}}logp(X;\theta )]

其中,E 是对数据的期望,logp(X;\theta ) 是对数似然函数,\frac{\partial ^{2}}{\partial \theta ^{2}} 是对数似然函数关于参数 \theta 的二阶导数。

2. 费舍尔信息矩阵的含义

  • 信息量:费舍尔信息度量了数据对于估计某个参数的"信息量"。如果费舍尔信息较大,意味着观测数据对于该参数的估计越精确。

  • 不确定性:费舍尔信息的倒数是参数估计的方差的下界,即Cramér-Rao下界(Cramér-Rao Bound)。根据Cramér-Rao不等式,参数的无偏估计量的方差不能小于费舍尔信息的倒数。因此,费舍尔信息矩阵提供了对参数估计方差的下限约束。

    Var(\hat{\theta })\geq (I(\theta ))^{-1}
  • 这里,\hat{\theta } 是参数的估计值,I(\theta ) 是费舍尔信息矩阵。

3. 费舍尔信息矩阵的数学表达

对于一个模型,假设样本 X 的联合概率密度函数为 p(X;\theta ),其中 \theta 为参数,logp(X;\theta )是对数似然函数。费舍尔信息矩阵的元素可以通过以下公式计算:

I_{ij}(\theta )=-E\left [ \frac{\partial ^{2}}{\partial \theta _{i}\partial \theta _{j}} logp(X;\theta )\right ]

其中,ij 表示参数的不同维度,\theta _{i}\theta _{j} 是参数的不同分量。具体来说,费舍尔信息矩阵中的每个元素 I_{ij} 表示参数 \theta _{i}\theta _{j} 对似然函数的二阶导数的期望值。

4. 费舍尔信息矩阵的性质

  • 对称性:费舍尔信息矩阵是对称矩阵,即 I_{ij}(\theta )=I_{ji}(\theta )。这是由于对数似然函数的二阶偏导数是对称的。

  • 正定性:费舍尔信息矩阵是正定的,即它的特征值全为正。这意味着它的逆矩阵(即Cramér-Rao下界)存在,并且可以用于描述参数估计的精确度。

  • 无偏估计:根据Cramér-Rao下界,若参数的估计量是无偏的,那么它的方差的下界由费舍尔信息矩阵的逆给出。

5. 计算例子

假设我们要估计一个正态分布的均值和方差,数据为 X_{1},X_{2},\cdots ,X_{n},假设数据来自正态分布 N(\mu ,\sigma ^{2}),其中 \mu\sigma ^{2} 是需要估计的参数。

     1.对数似然函数: 正态分布的概率密度函数为:

p(x;\mu ,\sigma ^{2})=\frac{1}{\sqrt{2\pi \sigma ^{2}}}exp(-\frac{(x-\mu )^{2}}{2\sigma ^{2}})

对其取对数,得到对数似然函数:

logL(\mu ,\sigma ^{2})=-\frac{n}{2}log(2\pi \sigma ^{2})-\frac{1}{2\sigma ^{2}}\sum_{i=1}^{n}(x_{i}-\mu )^{2}

     2.计算费舍尔信息矩阵: 计算对数似然函数关于 \mu\sigma ^{2} 的二阶偏导数并求期望。通过这些步骤,我们可以得到每个参数的费舍尔信息。

最终得到的费舍尔信息矩阵的形式是一个 2×2 的矩阵,包含对均值和方差的估计不确定性的描述。

6. 费舍尔信息矩阵的应用

  1. 最大似然估计(MLE): 在最大似然估计中,费舍尔信息矩阵用于衡量参数估计的精确度。它提供了估计值的方差的下界,即Cramér-Rao下界。

  2. Cramér-Rao下界: 费舍尔信息矩阵可以用于计算Cramér-Rao下界,该下界给出了无偏估计量方差的下限。这意味着没有任何无偏估计量能比费舍尔信息矩阵给出的下界更加精确。

  3. 贝叶斯推断: 在贝叶斯推断中,费舍尔信息可以用来计算后验分布的精确度。如果有一个先验分布与观测数据结合得到后验分布,费舍尔信息矩阵可用来度量后验分布的集中程度。

  4. 统计推断: 在假设检验和置信区间的构建中,费舍尔信息矩阵为计算标准误差和进行假设检验提供了基础。

7. 总结

费舍尔信息矩阵是描述参数估计精度的重要工具,它基于对数似然函数的二阶导数,反映了数据中关于参数的信息量。通过计算费舍尔信息,可以得出参数估计的方差下限(Cramér-Rao下界),并在最大似然估计、贝叶斯推断和统计推断中广泛应用。

http://www.yidumall.com/news/68095.html

相关文章:

  • 个体户可以做开发网站业务嘛站长之家whois查询
  • 有做lol直播网站有哪些免费推广平台
  • 020网站开发建站系统有哪些
  • html5手机网站模板seo优化外包公司
  • 网站建设 asp 武汉百度上的广告多少钱一个月
  • 外贸seo网站推广网络营销方案总结
  • 大连做网站排名专业搜索引擎seo技术公司
  • 专业网页制作软件能帮助客户组织和管理网站优化外包顾问
  • uc官方网站开发中心网络推广哪家好
  • 婚恋交友网站建设策划足球比赛直播2021欧冠决赛
  • 济南软件制作合肥全网优化
  • 上海工商网站官网seo运营做什么
  • 腾讯云做网站需要报备如何制作一个自己的网页
  • 网站建设广找金手指排名贰肆百度一下首页百度
  • 自己做网站好不好广州关于进一步优化疫情防控措施
  • 为什么做美妆网站it菜鸡网seo
  • 淘宝联盟怎么建网站如何做seo优化
  • 怎做连接网站站长是什么级别
  • 什么网站做h5电话销售外呼系统软件
  • 中央 政府网站建设 管理网站免费客服系统
  • 成全视频免费高清观看在线播放下载免费优化网站
  • 专卖店vi设计公司山西seo推广
  • 网站建设套模版个人网站免费域名和服务器
  • 网络营销方案简述橘子seo
  • 北京招聘信息武汉seo优化分析
  • 网络游戏网站开发网站app免费生成软件
  • 做男女的那个视频网站不受限制的搜索引擎
  • wordpress本地音乐播放器网络优化
  • 南通做网站网站网络推广运营
  • 学校网站改版网络推广费用高吗