当前位置: 首页 > news >正文

民治做网站多少钱百度竞价推广代运营

民治做网站多少钱,百度竞价推广代运营,做网站名词,西安 网站设计使用Hadoop MapReduce实现各省学生总分降序排序,根据省份分出输出到不同文件 本文将展示如何使用Hadoop MapReduce对一组学生成绩数据进行处理,将各省的学生成绩按总分降序排序并按照省份进行分区将结果分别输出到不同的文件中。 数据样例 我们将使用…

使用Hadoop MapReduce实现各省学生总分降序排序,根据省份分出输出到不同文件

本文将展示如何使用Hadoop MapReduce对一组学生成绩数据进行处理,将各省的学生成绩按总分降序排序并按照省份进行分区将结果分别输出到不同的文件中。

数据样例

我们将使用以下格式的数据:
在这里插入图片描述

实现步骤

我们将通过以下步骤来实现这一目标:

**1、Mapper类:**解析每一行数据,提取省份和总分,并输出为键值对。
**2、Reducer类:**对每个省份的数据按总分降序排序后输出到相应的文件中。
**3、Partitioner类:**确保同一省份的数据被发送到同一个Reducer。
**4、Driver类:**配置并运行MapReduce作业。

代码实现

Mapper类
Mapper类将每一行数据解析为省份和总分,并输出为键值对,键是省份,值是总分和学生信息的组合。

package org.example.mapReduce;import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;public class ProvinceScoreMapper extends Mapper<Object, Text, Text, Text> {@Overrideprotected void map(Object key, Text value, Context context) throws IOException, InterruptedException {String line = value.toString();// Skip the header lineif (line.startsWith("考号")) {return;}String[] fields = line.split(" ");String province = fields[11];String totalScore = fields[10];context.write(new Text(province), new Text(totalScore + "," + line));}
}

Reducer类
Reducer类将每个省份的数据按总分降序排序后输出,使用MultipleOutputs将每个省的数据写入单独的文件。

package org.example.mapReduce;import java.io.IOException;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;public class ProvinceScoreReducer extends Reducer<Text, Text, Text, Text> {private MultipleOutputs<Text, Text> multipleOutputs;@Overrideprotected void setup(Context context) throws IOException, InterruptedException {multipleOutputs = new MultipleOutputs<>(context);}@Overrideprotected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {List<String> students = new LinkedList<>();for (Text val : values) {students.add(val.toString());}// Sort students by total score in descending orderCollections.sort(students, (a, b) -> {int scoreA = Integer.parseInt(a.split(",")[0]);int scoreB = Integer.parseInt(b.split(",")[0]);return Integer.compare(scoreB, scoreA);});for (String student : students) {String[] parts = student.split(",", 2);multipleOutputs.write(new Text(parts[1]), null, key.toString() + "/part");}}@Overrideprotected void cleanup(Context context) throws IOException, InterruptedException {multipleOutputs.close();}
}

Partitioner类
Partitioner类确保同一省份的数据被发送到同一个Reducer。

package org.example.mapReduce;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;public class ProvincePartitioner extends Partitioner<Text, Text> {@Overridepublic int getPartition(Text key, Text value, int numPartitions) {String province = key.toString();return (province.hashCode() & Integer.MAX_VALUE) % numPartitions;}
}

Driver类
Driver类配置并运行MapReduce作业。

package org.example.mapReduce;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;public class ProvinceScoreSorter {public static void main(String[] args) throws Exception {if (args.length != 2) {System.err.println("Usage: ProvinceScoreSorter <input path> <output path>");System.exit(-1);}Configuration conf = new Configuration();Job job = Job.getInstance(conf, "Province Score Sorter");job.setJarByClass(ProvinceScoreSorter.class);job.setMapperClass(ProvinceScoreMapper.class);job.setPartitionerClass(ProvincePartitioner.class);job.setReducerClass(ProvinceScoreReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(Text.class);FileInputFormat.addInputPath(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));MultipleOutputs.addNamedOutput(job, "province", FileOutputFormat.class, Text.class, Text.class);System.exit(job.waitForCompletion(true) ? 0 : 1);}
}

运行MapReduce作业

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结

通过以上步骤,我们实现了一个Hadoop MapReduce作业来对各省的学生总分进行降序排序,并将结果写入不同的文件中。

如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于MapReduce, MySQL, python,java,大数据,模型训练等。 hadoop hdfs yarn spark Django flask flink kafka flume datax sqoop seatunnel echart可视化 机器学习等
在这里插入图片描述

http://www.yidumall.com/news/66297.html

相关文章:

  • 开网站建设app开发网站
  • 金华网站推广东莞做网站seo
  • 网站悬浮窗口开发一个网站
  • django企业网站源码最新国际新闻
  • wordpress 图片剪裁网络seo啥意思
  • 阿里云中英文网站建设北京seo主管
  • 360 的网站链接怎么做引流推广网站
  • wordpress js失效如何做网站关键词优化
  • 黄页推广是什么意思seo推广教程seo推广技巧
  • 济南建网站推荐6个免费国外自媒体平台
  • 上海 网站建设网站排名优化首页
  • 腾讯云搭建网站搜狐综合小时报2022113011
  • 目前做网站流行的语言买友情链接
  • 天津市做网站公司软文营销广告案例
  • 哈尔滨城市规划建设网优化关键词有哪些方法
  • wordpress文章没缩略图seo搜索引擎优化5
  • 门户网站制作流程博客如何做营销活动
  • 泉州手机网站制作百度知道客服
  • 东莞网站建设渠道备案域名
  • 如何做好品牌宣传工作seo排名点击工具
  • 自己做的网站变成二维码java东莞seo推广
  • 企业网站建设指导规范网络公关
  • 兰州网站推广优化经济新闻最新消息财经
  • 自创网站的软件下载常州seo第一人
  • 做网站第一步做什么seo网络优化平台
  • 网站怎么续费建网站的流程
  • 苏州做网站的天气预报最新天气预报
  • 广州口碑好的网站建设定制国内最新消息新闻
  • 手机怎么做图纸设计西安seo优化排名
  • 怎样做自己的vip解析网站网站seo去哪个网站找好