当前位置: 首页 > news >正文

网站建设经营服务合同范本百度官方优化软件

网站建设经营服务合同范本,百度官方优化软件,昌平做网站,中文博客网站模板Matlab搭建AlexNet实现手写数字识别 个人博客地址 文章目录Matlab搭建AlexNet实现手写数字识别环境内容步骤准备MNIST数据集数据预处理定义网络模型定义训练超参数网络训练和预测代码下载环境 Matlab 2020aWindows10 内容 使用Matlab对MNIST数据集进行预处理,搭建…

Matlab搭建AlexNet实现手写数字识别

个人博客地址

文章目录

  • Matlab搭建AlexNet实现手写数字识别
    • 环境
    • 内容
    • 步骤
      • 准备MNIST数据集
      • 数据预处理
      • 定义网络模型
      • 定义训练超参数
      • 网络训练和预测
    • 代码下载

环境

  • Matlab 2020a
  • Windows10

内容

使用Matlab对MNIST数据集进行预处理,搭建卷积神经网络进行训练,实现识别手写数字的任务。在训练过程中,每隔30个batch输出一次模型在验证集上的准确率和损失值。在训练结束后会输出验证集中每个数字的真实值、网络预测值和判定概率,并给出总的识别准确率。

步骤

准备MNIST数据集

为了方便进行测试,本次只选用500张MNIST数据集,每个数字50张。

下载数据集后并解压,为每个数字创建单独文件夹并将该数字的所有图片放在对应的文件夹下,如图1所示。
数据集下载地址 提取码:af6n
数据分类

手动分类结束后每个文件夹中应有50张图片。

数据预处理

% 加载数据集
imds = imageDatastore(..."./data",...'IncludeSubfolders', true,...'LabelSource','foldernames');

使用imageDatastore加载数据集。第一个参数填写数据集路径。由于本次实验data目录下含有子文件夹所以IncludeSubfolders需要指定为true。LabelSource表示标签来源,这里使用文件夹名字来代表标签。

  ImageDatastore - 属性:Files: {'D:\data\0\0_1.bmp';'D:\data\0\0_10.bmp';'D:\data\0\0_11.bmp'... and 497 more}Folders: {'D:\data'}Labels: [0; 0; 0 ... and 497 more categorical]AlternateFileSystemRoots: {}ReadSize: 1SupportedOutputFormats: [1×5 string]DefaultOutputFormat: "png"ReadFcn: @readDatastoreImage

上面内容为执行imageDatastore后返回变量的属性。可以看出已经成功将数据集读入并对每张图片进行label处理。

由于每个数字有50张图像,因此本次实验每个数字选用30张进行训练,另20张进行验证。使用splitEachLabel进行划分,得到训练集和验证集。

% 数据打乱
imds = shuffle(imds);% 划分训练集和验证集。每一个类别训练集有30个,验证集有20个
[imdsTrain,imdsValidation] = splitEachLabel(imds, 30);

使用shuffle进行数据打乱。得到的imdsTrain和imdsValidation分别有300和200张图片。

% 将训练集与验证集中图像的大小调整成与输入层的大小相同
augimdsTrain = augmentedImageDatastore([28 28],imdsTrain);
augimdsValidation = augmentedImageDatastore([28 28],imdsValidation);

定义网络模型

% 构建alexnet卷积网络 
alexnet = [imageInputLayer([56,56,1], 'Name', 'Input')convolution2dLayer([11,11],48,'Padding','same','Stride',4, 'Name', 'Conv_1')batchNormalizationLayer('Name', 'BN_1')reluLayer('Name', 'Relu_1')maxPooling2dLayer(3,'Padding','same','Stride',2, 'Name', 'MaxPooling_1')convolution2dLayer([5,5],128,'Padding',2,'Stride',1, 'Name', 'Conv_2')batchNormalizationLayer('Name', 'BN_2')reluLayer('Name', 'Relu_2')maxPooling2dLayer(3,'Padding','same','Stride',2, 'Name', 'MaxPooling_2')convolution2dLayer([3 3],192,'Padding',1,'Stride',1, 'Name', 'Conv_3')batchNormalizationLayer('Name', 'BN_3')reluLayer('Name', 'Relu_3')convolution2dLayer([3 3],192,'Padding',1,'Stride',1, 'Name', 'Conv_4')batchNormalizationLayer('Name', 'BN_4')reluLayer('Name', 'Relu_4')convolution2dLayer([3 3],128,'Stride',1,'Padding',1, 'Name', 'Conv_5')batchNormalizationLayer('Name', 'BN_5')reluLayer('Name', 'Relu_5')maxPooling2dLayer(3,'Padding','same','Stride',2, 'Name', 'MaxPooling_3')fullyConnectedLayer(4096, 'Name', 'FC_1')reluLayer('Name', 'Relu_6')fullyConnectedLayer(4096, 'Name', 'FC_2')reluLayer('Name', 'Relu_7')fullyConnectedLayer(10, 'Name', 'FC_3')    % 将新的全连接层的输出设置为训练数据中的种类softmaxLayer('Name', 'Softmax')            % 添加新的Softmax层classificationLayer('Name', 'Output') ];   % 添加新的分类层

使用上面的代码即可构建AlexNet模型。

% 对构建的网络进行可视化分析
lgraph = layerGraph(mynet);
analyzeNetwork(lgraph)

在这里插入图片描述

定义训练超参数

% 配置训练选项   
options = trainingOptions('sgdm', ...'InitialLearnRate',0.001, ...    'MaxEpochs',100, ...               'Shuffle','every-epoch', ...'ValidationData',augimdsValidation, ...'ValidationFrequency',30, ...'Verbose',true, ...'Plots','training-progress'); 

本次实验选用sgdm作为优化器,初始学习率设置为0.001,最大迭代次数为100,每次迭代都会打乱数据,每隔30个batch进行一次验证。

网络训练和预测

% 对网络进行训练
net = trainNetwork(augimdsTrain, mynet, options); % 将训练好的网络用于对新的输入图像进行分类,得到预测结果和判定概率
[YPred, err] = classify(net, augimdsValidation);

其中,YPred是存放网络对验证集预测结果的数组,err存放着每个数字的判定概率。

在这里插入图片描述

% 打印真实数字、预测数字、判定概率和准确率
YValidation = imdsValidation.Labels;
for i=1:200
fprintf("真实数字:%d  预测数字:%d", double(YValidation(i,1))-1, double(YPred(i, 1))-1);
fprintf("  判定概率:%f\n", max(err(i, :)));
end

运行上面代码即可打印相关结果。

... ...
真实数字:4  预测数字:4  判定概率:0.814434
真实数字:0  预测数字:0  判定概率:0.657829
真实数字:8  预测数字:8  判定概率:0.874560
真实数字:0  预测数字:0  判定概率:0.988826
真实数字:6  预测数字:6  判定概率:0.970034
... ...
真实数字:5  预测数字:5  判定概率:0.806220
真实数字:4  预测数字:4  判定概率:0.938233
真实数字:7  预测数字:7  判定概率:0.906994
真实数字:7  预测数字:7  判定概率:0.837794
真实数字:6  预测数字:6  判定概率:0.951572
真实数字:6  预测数字:1  判定概率:0.415834
真实数字:5  预测数字:5  判定概率:0.789031
真实数字:2  预测数字:2  判定概率:0.363526
真实数字:7  预测数字:7  判定概率:0.930049准确率:0.880000

代码下载

GitHub下载

http://www.yidumall.com/news/65802.html

相关文章:

  • 做网站具体指什么百度官方客服平台
  • 将台地区网站建设有了域名怎么建网站
  • 公司网站设计很好的百度收录刷排名
  • 网站模板源码下载福州百度seo
  • 绍兴网站制作搜索引擎优化主要包括
  • 名师工作室网站建设建议网店运营怎么学
  • 做推广网站费用宁波外贸网站推广优化
  • 泰州网站模板河南网站建设
  • 大网站怎样选域名私人做网站建设
  • 可以看禁止访问网站的浏览器短视频代运营公司
  • 网站动态图怎么做沈阳专业网站seo推广
  • 中山做网站的嘉兴seo外包公司费用
  • 商务网站模块设计时前台基础设施建设不包括网络广告营销有哪些
  • 织梦网站模板安装本地百度点击器找名风
  • 网站数据分析视频四川企业seo
  • 网页界面设计一般使用的分辨率关键词优化到首页怎么做到的
  • 如何做微信网站防封谷歌下载
  • 酒店 网站构建域名注册查询
  • 佛山响应式网站建设优化大师下载安装app
  • angularjs 网站开发优化方案官网电子版
  • 开通公司网站怎么开通网站一级域名和二级域名区别
  • 网站需要网监备案企业营销策划合同
  • 珠海培训网站建设线上营销怎么做
  • 邢台哪里有做网站的广东东莞今日最新消息
  • 浦江网站建设微信开发想要网站导航推广
  • 论坛网站html模板zac seo博客
  • 做网站如何报价网站怎么开发
  • 怎么判断网站是不是模板做的dy刷粉网站推广马上刷
  • 网站建设与维护经营范围怎么在百度上推广
  • 东营有能做网站优化最新推广赚钱的app