当前位置: 首页 > news >正文

建设局权力大吗北京企业网站seo平台

建设局权力大吗,北京企业网站seo平台,常用网站架构,做php网站教程视频教程1. 前言 (1)PPO的优点 PPO(Proximal Policy Optimization)算法相比其他强化学习方法有几个显著优点: 稳定性和鲁棒性:PPO通过限制策略更新的幅度来避免训练过程中的大幅波动,这增加了算法的稳…

1. 前言

(1)PPO的优点

PPO(Proximal Policy Optimization)算法相比其他强化学习方法有几个显著优点:

  1. 稳定性和鲁棒性:PPO通过限制策略更新的幅度来避免训练过程中的大幅波动,这增加了算法的稳定性和鲁棒性。这是通过引入一个被称为“信任区域”的概念来实现的,它限制了新策略与旧策略之间的偏离程度。
  2. 简单的实现:与其他需要复杂计算的强化学习算法(如TRPO)相比,PPO简化了这些计算,使得实现起来更为简单,同时保持了相似的性能,这使得它在实践中更受欢迎。
  3. 样本效率:PPO在使用每个数据样本方面比一些其他算法更有效,它可以在每次迭代中重复利用数据,从而提高样本的使用效率。
  4. 适用性广:PPO被证明在连续动作空间的多种环境中有效,这意味着它适用于各种任务,包括机器人控制和游戏等。
  5. 超参数调整容易:PPO相对于其他算法来说对超参数的选择不那么敏感,这降低了调整参数的难度。
  6. 高性能:PPO在多个基准测试和任务中显示出了优秀的性能,包括与其他先进的RL算法相比。

(2)策略梯度的优点

  1. 处理连续动作空间: 策略梯度非常适合于连续动作空间的问题。例如,如果你在控制一个机器人的臂,它的动作是连续的角度变化,策略梯度方法可以学习在任何给定状态下应该施加什么样的扭矩。
  2. 更好的探索机制:策略梯度方法通常会有更好的探索机制,因为它们可以在选择动作时采取随机性。这种随机性使智能体有可能探索到新的、可能更好的动作。
  3. 适合非马尔可夫决策过程:策略梯度方法可以在非马尔可夫(非完全可观测)的环境中工作得很好,因为它们不需要像值函数方法那样严格地依赖于状态的马尔可夫性质。

2. 学习资料

2.1 Hung-yi Lee(李宏毅)RL course

Machine Learning 2017 (Hung-yi Lee, NTU) 23-1~23-3

3. 常见术语

PPO:Proximal Policy Optimization,近端策略优化

Imitation Learning:模仿学习

GPT4-AllTools:模仿学习是一种让机器通过观察和复制专家行为来学习特定任务的技术。就像是当我们小时候学习骑自行车或做饭时观察父母的动作并尝试效仿他们一样。

行动者+评论家(Actor+Critic)

在机器学习的强化学习任务中,行动者负责做决定并采取行动,而评论家则评估这些行动,并指导行动者如何调整策略以做得更好。通过这种合作,行动者学会更好地完成任务。

4. RL面临的挑战

奖励延迟(Reward Delay)

Reward Delay 是指在行为和由该行为引起的奖励之间存在时间延迟。这种延迟使得学习过程复杂化,因为学习算法需要能够将行为与可能在很长一段时间后才出现的结果联系起来。

李宏毅老师用 Space Invader 讲解 Reward Delay:

  • 但是如果machine只知道開火以後就得到reward
  • 它最後learn出來的結果它只會瘋狂開火
  • 對它來說往左移、往右移沒有任何reward它不想做
  • Reward delay
    • In space invader, only “fire” obtains reward
    • Although the moving before “fire” is important
    • In Go playing, it may be better to sacrifice immediate reward to gain more long-term reward

5. 常见概念

5.1 基本流程

5.1.1 Sample函数:探索行动的策略

Sample函数在训练过程中对应着“样本增广”的作用;

5.1.2 Gradient Ascent

Note:如果比赛胜利的话,就从参数上提升此次动作序列(sequence)出现的概率 θ \theta θ

θ new ← θ old  + η ∇ R ˉ θ o l d \theta^{\text {new}} \leftarrow \theta^{\text {old }}+\eta \nabla \bar{R}_{\theta^{old}} θnewθold +ηRˉθold

∇ R ˉ θ ≈ 1 N ∑ n = 1 N R ( τ n ) ∇ log ⁡ P ( τ n ∣ θ ) = 1 N ∑ n = 1 N R ( τ n ) ∑ t = 1 T n ∇ log ⁡ p ( a t n ∣ s t n , θ ) = 1 N ∑ n = 1 N ∑ t = 1 T n R ( τ ∘ n ) ∇ log ⁡ p ( a t n ∣ s t n , θ ) \begin{aligned} \nabla \bar{R}_\theta & \approx \frac{1}{N} \sum_{n=1}^N R\left(\tau^n\right) \nabla \log P\left(\tau^n \mid \theta\right)=\frac{1}{N} \sum_{n=1}^N R\left(\tau^n\right) \sum_{t=1}^{T_n} \nabla \log p\left(a_t^n \mid s_t^n, \theta\right) \\ & =\frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} R\left(\tau_{\circ}^n\right) \nabla \log p \left(a_t^n \mid s_t^n, \theta\right)\end{aligned} RˉθN1n=1NR(τn)logP(τnθ)=N1n=1NR(τn)t=1Tnlogp(atnstn,θ)=N1n=1Nt=1TnR(τn)logp(atnstn,θ)
∇ log ⁡ p ( a t n ∣ s t n , θ ) = ∇ p ( a t n ∣ s t n , θ ) p ( a t n ∣ s t n , θ ) \nabla \log p\left(a_t^n \mid s_t^n, \theta\right) = \frac{\nabla p\left(a_t^n \mid s_t^n, \theta\right)}{p\left(a_t^n \mid s_t^n, \theta\right)} logp(atnstn,θ)=p(atnstn,θ)p(atnstn,θ)

关于从直觉上理解这里为什么要除以 p ( a t n ∣ s t n , θ ) p\left(a_t^n \mid s_t^n, \theta\right) p(atnstn,θ)

Q:请问,可以从直觉上解释 why divided by p ( a t n ∣ s t n , θ ) p\left(a_t^n \mid s_t^n, \theta\right) p(atnstn,θ)吗?
ChatGPT4

  • 从直觉上来说, ∇ log ⁡ p ( a t n ∣ s t n , θ ) \nabla \log p\left(a_t^n \mid s_t^n, \theta\right) logp(atnstn,θ)中的除以 p ( a t n ∣ s t n , θ ) p\left(a_t^n \mid s_t^n, \theta\right) p(atnstn,θ)这一步出现在对数概率的梯度中,它可以被解释为一种“归一化(Normalization)”过程。
  • 在策略梯度方法中,我们希望调整参数 θ \theta θ以增加好动作的概率,并减少坏动作的概率。为了做到这一点,我们需要考虑动作的概率:如果一个好动作已经有很高的概率被选择,我们不需要太大幅度地增加它的概率;而如果一个好动作目前只有很小的概率被选择,我们可能希望更显著地增加其被选中的概率。
  • 通过计算概率的对数梯度,我们实际上是在计算“相对于动作概率的变化率”。这样,对于那些已经很可能发生的动作,我们只进行小幅度的调整;而对于不太可能发生但却是好动作的情况,我们会做出更大的调整。

4.2 Sarsa和Q-Learning——最初的强化学习算法

2.1 基于Q-Learning的强化学习——使用Q表进行动作选择

其实Q-Learning的思想很简单,就跟把大象放进冰箱是差不多的,
基本的步骤是:

  1. 观察环境,得到observation;
  2. 根据obs查询Q表格,选择Q值最大的action;
  3. 执行该动作。

3.2 Sarsa和Q-Learning的预期目标

其实这两种算法的目标不同,导致了结果不同:

Sarsa:使得sample()行为的reward的平均水平达到最大;

Q-Learning:使得maxQ()行为的reward的达到最大;

3 DQN——用神经网络取代Q表格

3.1 为什么要用神经网络取代Q表呢?

如果动作状态的空间是连续的,则使用Q表可能无法对这种空间进行表述,(连续状态的可能取值是无限多的),

于是我们将“状态-Q值”看作是一种映射,也就是说:使用函数映射的思想来描述“状态-Q值”的映射关系

既然是函数映射,于是我们的DNN就闪亮登场了~

4 Actor-Critic算法

在我看来Actor和Critic有着这样的特点:

Actor——本能者

Critic——经验者

具体的形式就是Q Function;

量化Q的方法我们采用TD,(这也是李教授讲授的方法),

我感觉Critic有着将reward规则进行可导化的作用;

感性认识:表达了模型对规则的理解,(同时将reward函数进行可导化);

http://www.yidumall.com/news/64653.html

相关文章:

  • idc销售网站php源代码百度产品有哪些
  • 手机赚钱软件seo提高关键词
  • 面试个人简历范文及网站建设百度应用中心
  • 安徽华力建设集团网站分析网站推广和优化的原因
  • 亚马逊站外推广平台有哪些信息发布
  • 婚庆网站开发要达到的目标网络广告投放平台
  • 上海网站建设公司排名百度资源
  • 网站备案核实百度网站流量查询
  • 网页的网站建设google推广怎么做
  • php网站开发周期多长seo 优化教程
  • 陕西省建设造价协会网站免费发布信息
  • 自己做的网站显示iis7百度一下进入首页
  • 网站建设公司名称百一度一下你就知道
  • 青海网站建设与维护关键字是什么意思
  • 同企网站建设做网站百度竞价是什么
  • 鼓楼机关建设网站搭建网站
  • 网站登不了企业建设网银百度竞价关键词出价技巧
  • 做游戏数据分析的网站广安网站seo
  • 个人网站还用备案吗网络推广员每天的工作是什么
  • wordpress 小米主题制作大侠seo外链自动群发工具
  • wordpress+采集评论上海官网seo
  • 博客网站开发技术太原做网站的
  • 赌球网站怎么做爱站网长尾关键词挖掘工具的作用
  • 怎么用h5网站做动效推广普通话文字内容
  • 网站开发需要学mvc吗百度竞价推广点击软件
  • 广州知名网站建设哪家公司好seo模拟点击
  • 东莞建站公司seo研究中心
  • 南京网站制作公司怎么样无锡网站建设seo
  • 湘潭企业网站建设 磐石网络电脑培训学校能学什么
  • 成都建设网站独立站怎么建站