当前位置: 首页 > news >正文

通州网站建设公司如何做百度关键词推广

通州网站建设公司,如何做百度关键词推广,盘县做会计兼职的网站,怎样做网站设计目录 前言一、定义二、基本操作三、时间复杂度分析四、变体五、动态图解六、代码模版七、经典例题[1.——700. 二叉搜索树中的搜索](https://leetcode.cn/problems/search-in-a-binary-search-tree/)代码题解 [2.——938. 二叉搜索树的范围和](https://leetcode.cn/problems/ra…

目录

  • 前言
  • 一、定义
  • 二、基本操作
  • 三、时间复杂度分析
  • 四、变体
  • 五、动态图解
  • 六、代码模版
  • 七、经典例题
    • [1.——700. 二叉搜索树中的搜索](https://leetcode.cn/problems/search-in-a-binary-search-tree/)
      • 代码题解
    • [2.——938. 二叉搜索树的范围和](https://leetcode.cn/problems/range-sum-of-bst/)
      • 代码题解
    • [3.——98. 验证二叉搜索树](https://leetcode.cn/problems/validate-binary-search-tree/)
      • 代码题解
  • 八、总结
  • 结语

前言

这一期我们一起来学习二叉搜索树。二叉搜索树(Binary Search Tree, BST)是一种重要的数据结构,在计算机科学中广泛应用于查找、插入和删除操作。以下是对二叉搜索树的基本分析,包括其定义、性质、操作的时间复杂度以及一些变体。

一、定义

二叉搜索树是一种二叉树,其中每个节点包含一个键值,且满足以下性质:

左子树性质:左子树中所有节点的键值都小于根节点的键值。
右子树性质:右子树中所有节点的键值都大于根节点的键值。
递归性质:左子树和右子树本身也是二叉搜索树。

二、基本操作

1.查找(Search)
算法:从根节点开始,如果目标键值小于当前节点的键值,则递归地在左子树中查找;如果目标键值大于当前节点的键值,则递归地在右子树中查找;如果找到目标键值,则返回该节点。
时间复杂度:在最坏情况下(树退化为链表),时间复杂度为 O(n);在最优情况下(树是平衡的),时间复杂度为 O(logn)。

2.插入(Insert)
算法:从根节点开始,找到合适的位置插入新节点。如果目标键值小于当前节点的键值,则递归地在左子树中查找插入位置;如果目标键值大于当前节点的键值,则递归地在右子树中查找插入位置;如果目标键值已经存在,则根据具体需求更新节点(例如,更新节点的值或不做任何操作)。
时间复杂度:与查找操作类似,最坏情况下为 O(n),最优情况下为 O(logn)。

3.删除(Delete)
算法:找到要删除的节点,然后分三种情况处理:
叶子节点:直接删除。
只有一个子节点:用其子节点替代被删除节点。
有两个子节点:找到该节点的中序后继(或中序前驱),用其值替代被删除节点的值,然后递归删除中序后继(或中序前驱)。
时间复杂度:最坏情况下为 O(n),最优情况下为 O(logn)。

三、时间复杂度分析

二叉搜索树的时间复杂度依赖于树的高度。在最坏情况下(树退化为链表),树的高度为 n,因此各种操作的时间复杂度均为 O(n)。然而,在最优情况下(树是平衡的),树的高度为 logn,因此各种操作的时间复杂度均为 O(logn)。

四、变体

为了改善二叉搜索树在最坏情况下的性能,人们提出了多种变体:

平衡二叉搜索树(Balanced BST):如AVL树、红黑树等,通过维护树的平衡来确保操作的时间复杂度始终为 O(logn)。
B树(B-Tree):一种自平衡的树,能够保持数据有序,其设计目的是减少磁盘I/O操作,广泛应用于数据库和文件系统。
伸展树(Splay Tree):在每次查找操作后,通过一系列旋转操作将查找路径上的节点重新组织成一条链,使得下次查找更加高效。

五、动态图解

元素查找:
在这里插入图片描述
元素插入:
在这里插入图片描述

元素删除:
元素

中序遍历
在这里插入图片描述

六、代码模版

#include<iostream>
using namespace std;template<typename T>
struct TreeNode {T val;TreeNode* left;TreeNode* right;TreeNode(T x):val(x),left(NULL),right(NULL){}TreeNode():val(0),left(NULL),right(NULL){}
};template<typename T>
class BinarySearchTree {
private:TreeNode<T>* root;TreeNode<T>* insertNode(TreeNode<T>* node, T val);TreeNode<T>* removeNode(TreeNode<T>* node, T val);bool searchNode(TreeNode<T>* node, T val);void inOrder(TreeNode<T>* node);
public:BinarySearchTree():root(NULL){}~BinarySearchTree();void insert(T val) {root = insertNode(root, val);}void remove(T val) {root = removeNode(root, val);}bool search(T val) {return searchNode(root, val);}void inOrderTraversal() {inOrder(root);cout << endl;}
};template<typename T>
BinarySearchTree<T>::~BinarySearchTree() {while (root) {remove(root->val);//每次都把root节点删除,每次删除都产生新的root节点}
}template<typename T>
TreeNode<T>* BinarySearchTree<T>::insertNode(TreeNode<T>* node, T val) {if (!node) {return new TreeNode<T>(val);//递归出口,该节点为空时就说明插入到当前位置,定义新的变量接收val}if (node->val > val) {node->left = insertNode(node->left, val);}else if (node->val < val) {node->right = insertNode(node->right, val);}return node;//说明当前节点与插入节点的值一致返回该节点即可
}template<typename T>
TreeNode<T>* BinarySearchTree<T>::removeNode(TreeNode<T>* node, T val) {if (!node)return NULL;//递归出口,如果找完了整棵树都没找到该值就返回NULLif (node->val > val) node->left = removeNode(node->left, val);else if (node->val < val)node->right = removeNode(node->right, val);else {//该节点的值等于要删除节点的值一致就说明找到了if (node->left == NULL && node->right == NULL) {//如果该节点为叶子结点,接直接删除该节点就行delete node;return NULL;//因为删除了该节点所以它就为空了返回即可}else if (node->left == NULL) {//要删除的节点只有右节点TreeNode<T>* rightChild = node->right;//定义一个变量储存该节点右节点的树delete node;return rightChild;}else if (node->right == NULL) {//与上同理TreeNode<T>* leftChild = node->left;delete node;return leftChild;}else {//如果左右节点都有TreeNode<T>* replacement = node->right;//从右子树中找值最小的节点while (replacement->left) {replacement = replacement->left;}node->val = replacement->val;//找到之后赋给该节点node->right = removeNode(node->right, replacement->val);//最后在删除最小值的节点}}return node;
}template<typename T>
bool BinarySearchTree<T>::searchNode(TreeNode<T>* node, T val) {if (!node)return false;//递归出口如果找完了整棵树都没找到该值就返回falseif (val < node->val) {//递归查找如果要查找的值小于当前节点那么就继续递归找左节点return searchNode(node->left, val);}else if (val > node->val) return searchNode(node->right, val);//与上同理return true;
}template<typename T>
void BinarySearchTree<T>::inOrder(TreeNode<T>* node) {if (node) {//中序遍历inOrder(node->left);cout << node->val << ',';inOrder(node->right);}
}int main() {BinarySearchTree<int> bst;bst.insert(30);bst.insert(10);bst.insert(20);bst.insert(40);bst.insert(90);bst.insert(69);bst.inOrderTraversal();//中序遍历为递增有序的数列bst.remove(40);bst.inOrderTraversal();return 0;
}

七、经典例题

1.——700. 二叉搜索树中的搜索

(蓝色字体可以点进去看原题)

代码题解

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:TreeNode* searchBST(TreeNode* root, int val) {if(root==NULL)return NULL;if(val>root->val)return searchBST(root->right,val);else if(root->val>val)return searchBST(root->left,val);return root;}
};

2.——938. 二叉搜索树的范围和

代码题解

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int rangeSumBST(TreeNode* root, int low, int high) {if(root==NULL)return 0;int sum=0;if(root->val>=low&&root->val<=high){sum+=root->val;}sum+=rangeSumBST(root->left,low,high);sum+=rangeSumBST(root->right,low,high);return sum;}
};

3.——98. 验证二叉搜索树

代码题解

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {vector<int> ret;void inOrder(TreeNode*root){if(root){inOrder(root->left);ret.push_back(root->val);inOrder(root->right);}}
public:bool isValidBST(TreeNode* root) {ret.clear();inOrder(root);//中序遍历之后就是递增的数列for(int i=1;i<ret.size();i++){if(ret[i]<=ret[i-1])return false;}return true;}
};

八、总结

二叉搜索树是一种简单而有效的数据结构,适用于许多查找、插入和删除操作。然而,其性能受树的高度影响,因此在最坏情况下可能退化为链表。为了克服这一缺点,可以使用平衡二叉搜索树等变体来确保操作的时间复杂度始终为 O(logn)。

结语

下期我会更新二叉搜索树的题库一共十多道,希望大家看完之后能去多多刷题巩固和运用知识点,敬请期待下期文章。

在这里插入图片描述

相信大家通过本期学习初步了解二叉树,下期作品我会更新二叉树的十几道题库,我们下期一起学习二叉树的实战应用。
在这里插入图片描述

http://www.yidumall.com/news/63802.html

相关文章:

  • 网站基本流程2023年广州疫情最新消息
  • 想做水果外卖怎么做网站网络舆情优化公司
  • 专注做xp的网站网络维护公司
  • 在公司平台做网站竞拍青岛官网seo公司
  • avee模板免费下载网站怎样做好服务营销
  • 网站建设服务介绍品牌营销平台
  • 做cpa联盟必须要有网站吗建立一个网站需要多少钱?
  • 一二三四视频社区在线长沙整站优化
  • 办网站 哪些许可网站怎么做
  • 网站建设业务流程淘宝的关键词排名怎么查
  • 摄影瀑布流网站模板市场seo是什么意思
  • 网站开发的一般流程是什么搜客通
  • 定陶网站建设无人区在线观看高清1080
  • 可视化网站建设平台百度推广电话
  • wordpress 婴儿专业seo培训
  • 大数据做网站流量分析中国网站排名查询
  • 做网站公司 深圳信科友情链接代码美化
  • 上海网站建设服务电话seo三人行论坛
  • 怎么进入别人网站服务器web 目录广西seo经理
  • 网站怎样优化关键词好建立一个企业网站需要多少钱
  • 网站建设和维护的职责六年级上册数学优化设计答案
  • 装修设计软件免费seo搜索优化怎么做
  • 大连手机自适应网站建设价格关键词排名优化公司哪家好
  • 在织梦网站做静态网页设计网站大全
  • 做决定网站东莞公司网上推广
  • wordpress修改永久链接后无法访问网站免费网站免费优化优化
  • 2018年怎样做淘宝客网站网络推广seo是什么
  • 葫芦岛做网站竞价推广工具
  • 做网站容易吗windows7优化大师下载
  • 建站如何注重内容建设线上营销策略有哪些