当前位置: 首页 > news >正文

网站设计 字体百度关键词推广公司

网站设计 字体,百度关键词推广公司,设计好的建设网站,wordpress清空数据点云降采样 第一章 点云数据采集 第二章 点云滤波 第二章 点云降采样 1. 为什么要降采样? 我们获得的数据量大,特别是几十万个以上的点云,里面有很多冗余数据,会导致处理起来比较耗时。 降采样是一种有效的减少数据、缩减计算量…

点云降采样

第一章 点云数据采集
第二章 点云滤波
第二章 点云降采样


1. 为什么要降采样?

我们获得的数据量大,特别是几十万个以上的点云,里面有很多冗余数据,会导致处理起来比较耗时。
降采样是一种有效的减少数据、缩减计算量的方法。

2.降采样算法

2.1 随机降采样

根据设置的比例系数随机删除点云,比较接近均匀采样,但不稳定。

Open3d

import numpy as np
import open3d as o3dpcd = o3d.io.read_point_cloud("second_radius_cloud.pcd")
print(pcd)  # 输出点云点的个数
o3d.visualization.draw_geometries([pcd], window_name="原始点云",width=1024, height=768,left=50, top=50,mesh_show_back_face=True)
downpcd = pcd.random_down_sample(sampling_ratio=0.5)
print(downpcd) #降采样后的点云数
o3d.visualization.draw_geometries([downpcd], window_name="随机降采样",width=1024, height=768,left=50, top=50,mesh_show_back_face=True)

在这里插入图片描述
PCL

#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/filters/random_sample.h>int main(int argc, char** argv) {pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_downsampled(new pcl::PointCloud<pcl::PointXYZ>);if (pcl::io::loadPCDFile<pcl::PointXYZ> ("1697165371469.pcd", *cloud) == -1){PCL_ERROR("couldn't read file");return 0;}std::cout << "Loaded " << cloud->width * cloud->height<< " data points" << std::endl;pcl::RandomSample<pcl::PointXYZ> random_sampling;random_sampling.setInputCloud(cloud);random_sampling.setSample(10000);  // 设置希望得到的点数random_sampling.filter(*cloud_downsampled);std::cout << "downsampled cloud size: " << cloud_downsampled->width * cloud_downsampled->height << std::endl;pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("3D Viewer"));viewer->setBackgroundColor(0, 0, 0);  // 设置背景色viewer->addPointCloud<pcl::PointXYZ>(cloud_downsampled, "sample cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "sample cloud");viewer->initCameraParameters();while (!viewer->wasStopped()){viewer->spinOnce(100);}return 0;
}

请添加图片描述

2.2 均匀降采样

就是每隔多远采集一个点,

Open3d

import numpy as np
import open3d as o3dpcd = o3d.io.read_point_cloud("second_radius_cloud.pcd")
print(pcd)  # 输出点云点的个数
o3d.visualization.draw_geometries([pcd], window_name="原始点云",width=1024, height=768,left=50, top=50,mesh_show_back_face=True)
downpcd = pcd.uniform_down_sample(6)
print(downpcd) #降采样后的点云数
o3d.visualization.draw_geometries([downpcd], window_name="均匀降采样",width=1024, height=768,left=50, top=50,mesh_show_back_face=True)

在这里插入图片描述

PCL

#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/filters/uniform_sampling.h>int main(int argc, char** argv) {pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_downsampled(new pcl::PointCloud<pcl::PointXYZ>);if (pcl::io::loadPCDFile<pcl::PointXYZ> ("1697165371469.pcd", *cloud) == -1){PCL_ERROR("couldn't read file");return 0;}std::cout << "Loaded " << cloud->width * cloud->height<< " data points" << std::endl;pcl::UniformSampling<pcl::PointXYZ> filter;		// 创建均匀采样对象filter.setInputCloud(cloud);					// 设置待采样点云filter.setRadiusSearch(10.0f);					// 设置采样半径filter.filter(*cloud_downsampled);					// 执行均匀采样,结果保存在cloud_filtered中std::cout << "downsampled cloud size: " << cloud_downsampled->width * cloud_downsampled->height << std::endl;pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("3D Viewer"));viewer->setBackgroundColor(0, 0, 0);  // 设置背景色viewer->addPointCloud<pcl::PointXYZ>(cloud_downsampled, "sample cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "sample cloud");viewer->initCameraParameters();viewer->saveScreenshot("screenshot.png");while (!viewer->wasStopped()){viewer->spinOnce(100);}return 0;
}

请添加图片描述

2.3 体素降采样

将空间切割为均匀大小的体素网格,以非空体素的质心代替该体素内的所有点。

原点云位置使用体素降采样后会发生变化。

open3d

import numpy as np
import open3d as o3d
pcd = o3d.io.read_point_cloud("second_radius_cloud.pcd")
print(pcd)  # 输出点云点的个数
o3d.visualization.draw_geometries([pcd], window_name="原始点云",width=1024, height=768,left=50, top=50,mesh_show_back_face=True)downpcd = pcd.voxel_down_sample(voxel_size=5)
print(downpcd)
o3d.visualization.draw_geometries([downpcd], window_name="体素降采样",width=1024, height=768,left=50, top=50,mesh_show_back_face=True)

请添加图片描述

pcl

#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/filters/voxel_grid.h>int main(int argc, char** argv) {pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_downsampled(new pcl::PointCloud<pcl::PointXYZ>);if (pcl::io::loadPCDFile<pcl::PointXYZ> ("1697165371469.pcd", *cloud) == -1){PCL_ERROR("couldn't read file");return 0;}std::cout << "Loaded " << cloud->width * cloud->height<< " data points" << std::endl;pcl::VoxelGrid<pcl::PointXYZ> sor;sor.setInputCloud(cloud);sor.setLeafSize(10.0f, 10.0f, 10.0f);sor.filter(*cloud_downsampled);std::cout << "downsampled cloud size: " << cloud_downsampled->width * cloud_downsampled->height << std::endl;pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("3D Viewer"));viewer->setBackgroundColor(0, 0, 0);  // 设置背景色viewer->addPointCloud<pcl::PointXYZ>(cloud_sampled, "sample cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "sample cloud");viewer->initCameraParameters();viewer->saveScreenshot("screenshot.png");while (!viewer->wasStopped()){viewer->spinOnce(100);}return 0;
}

请添加图片描述

2.4 最远点降采样

首先随机选择一个点,其次,在剩下点中寻找最远的点,再去再剩下点中找到同时离这两个点最远的点,直到满足采样点个数。
Open3d

import numpy as np
import open3d as o3dpcd = o3d.io.read_point_cloud("second_radius_cloud.pcd")
print(pcd)  # 输出点云点的个数
o3d.visualization.draw_geometries([pcd], window_name="原始点云",width=1024, height=768,left=50, top=50,mesh_show_back_face=True)
downpcd=pcd.farthest_point_down_sample(10000)
print(downpcd) #降采样后的点云数
o3d.visualization.draw_geometries([downpcd], window_name="最远点降采样",width=1024, height=768,left=50, top=50,mesh_show_back_face=True)

请添加图片描述
PCL

#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/common/distances.h>int main(int argc, char** argv) {pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_downsampled(new pcl::PointCloud<pcl::PointXYZ>);if (pcl::io::loadPCDFile<pcl::PointXYZ> ("1697165371469.pcd", *cloud) == -1){PCL_ERROR("couldn't read file");return 0;}std::cout << "Loaded " << cloud->width * cloud->height<< " data points" << std::endl;size_t N = cloud->size();assert(N >= 10000);srand(time(0));size_t seed_index = rand() % N;pcl::PointXYZ p = cloud->points[seed_index];;cloud_downsampled->push_back(p);cloud->erase(cloud->begin() + seed_index);for (size_t i = 1; i < 10000; i++){float max_distance = 0;size_t max_index = 0;for (size_t j = 0; j < cloud->size(); j++){float distance = pcl::euclideanDistance(p, cloud->points[j]);if (distance > max_distance){max_distance = distance;max_index = max_index;}}p = cloud->points[max_index];cloud_downsampled->push_back(p);cloud->erase(cloud->begin() + max_index);}std::cout << "downsampled cloud size: " << cloud_downsampled->width * cloud_downsampled->height << std::endl;pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("3D Viewer"));viewer->setBackgroundColor(0, 0, 0);  // 设置背景色viewer->addPointCloud<pcl::PointXYZ>(cloud_downsampled, "sample cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "sample cloud");viewer->initCameraParameters();while (!viewer->wasStopped()){viewer->spinOnce(100);}return 0;
}

在这里插入图片描述

2.5 移动最小二乘法降采样

在MLS法中,需要在一组不同位置的节点附近建立拟合曲线,每个节点都有自己的一组系数用于定义该位置附近拟合曲线的形态。因此,在计算某个节点附近的拟合曲线时,只需要计算该点的该组系数值即可。

此外,每个节点的系数取值只考虑其临近采样点,且距离节点越近的采样点贡献越大,对于未置较远的点则不予考虑。

许多文章都将移动最小二乘法作为降采样方法,我觉得这只是一种平滑,所以这里给了重建代码,不进一步实验了。

PCL

#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/surface/mls.h>
#include <pcl/search/kdtree.h>int main(int argc, char** argv) {pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_downsampled(new pcl::PointCloud<pcl::PointXYZ>);if (pcl::io::loadPCDFile<pcl::PointXYZ> ("second_radius_cloud.pcd", *cloud) == -1){PCL_ERROR("couldn't read file");return 0;}std::cout << "Loaded " << cloud->width * cloud->height<< " data points" << std::endl;pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);// 输出的PointCloud中有PointNormal类型,用来存储MLS算出的法线pcl::PointCloud<pcl::PointNormal> mls_points;// 定义MovingLeastSquares对象并设置参数pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointNormal> mls;mls.setComputeNormals(true);mls.setInputCloud(cloud);mls.setSearchMethod(tree);mls.setSearchRadius(30);// 曲面重建mls.process(mls_points);//std::cout << "downsampled cloud size: " << mls_points->width * mls_points->height << std::endl;// 使用PCLVisualizer进行可视化boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("MLS Cloud Viewer"));viewer->addPointCloud<pcl::PointNormal>(mls_points.makeShared(), "MLS Cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "MLS Cloud");viewer->addPointCloudNormals<pcl::PointNormal>(mls_points.makeShared(), 1, 0.05, "normals");  // 可选:显示法线viewer->saveScreenshot("screenshot.png");while (!viewer->wasStopped()){viewer->spinOnce(100);}return 0;
}

2.6 法线空间采样

通过在法向量空间内均匀随机抽样,使所选点之间的法线分布尽可能大,结果表现为地物特征变化大的地方剩余点较多,变化小的地方剩余点稀少,可有效保持地物特征。

Open3d

import open3d as o3d
import numpy as npdef normal_space_sampling(pcd, num_bins=5, num_samples=10000):# 1. 估算法线pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=10, max_nn=30))normals = np.asarray(pcd.normals)# 2. 使用法线的x、y和z分量将法线映射到一个3D直方图或“bin”空间bins = np.linspace(-1, 1, num_bins)normal_bins = np.digitize(normals, bins)unique_bins = np.unique(normal_bins, axis=0)sampled_indices = []for b in unique_bins:indices = np.all(normal_bins == b, axis=1)bin_points = np.where(indices)[0]if bin_points.size > 0:sampled_indices.append(np.random.choice(bin_points))# 如果采样点数不足,从原点云中随机选择其他点while len(sampled_indices) < num_samples:sampled_indices.append(np.random.randint(0, len(pcd.points)))# 3. 从每个bin中选择一个点进行采样sampled_points = np.asarray(pcd.points)[sampled_indices]sampled_pcd = o3d.geometry.PointCloud()sampled_pcd.points = o3d.utility.Vector3dVector(sampled_points)return sampled_pcd# 读取点云
pcd = o3d.io.read_point_cloud("second_radius_cloud.pcd")
sampled_pcd = normal_space_sampling(pcd)
o3d.visualization.draw_geometries([sampled_pcd])

在这里插入图片描述

PCL

#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/filters/normal_space.h>
#include <pcl/features/normal_3d.h>int main(int argc, char** argv) {pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_downsampled(new pcl::PointCloud<pcl::PointXYZ>);if (pcl::io::loadPCDFile<pcl::PointXYZ> ("second_radius_cloud.pcd", *cloud) == -1){PCL_ERROR("couldn't read file");return 0;}std::cout << "Loaded " << cloud->width * cloud->height<< " data points" << std::endl;// 计算法线pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;ne.setInputCloud(cloud);pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());ne.setSearchMethod(tree);pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>);ne.setRadiusSearch(30);  // 设置法线估计的半径ne.compute(*cloud_normals);// 法线空间采样pcl::NormalSpaceSampling<pcl::PointXYZ, pcl::Normal> nss;nss.setInputCloud(cloud);nss.setNormals(cloud_normals);nss.setBins(5, 5, 5);  // 设置法线空间的bin数量nss.setSample(cloud->size() / 10);  // 例如,取原始点云大小的1/10nss.filter(*cloud_downsampled);std::cout << "downsampled cloud size: " << cloud_downsampled->width * cloud_downsampled->height << std::endl;pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("3D Viewer"));viewer->setBackgroundColor(0, 0, 0);  // 设置背景色viewer->addPointCloud<pcl::PointXYZ>(cloud_downsampled, "sample cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "sample cloud");viewer->initCameraParameters();while (!viewer->wasStopped()){viewer->spinOnce(100);}return 0;
}

请添加图片描述

http://www.yidumall.com/news/63468.html

相关文章:

  • 网站的报价怎么做百度竞价可以自学吗
  • 肇庆企业自助建站樱桃磁力bt天堂
  • 免费行情软件app网站大全下载免费入口抖音搜索引擎优化
  • 幼儿园主题设计网络图seo云优化
  • seo推广招聘南平网站seo
  • 如何用iis部署网站如何在手机上开自己的网站
  • 网上销售 网站建设公司网站设计制作
  • 公司起名参考大全网络优化师
  • 做后期从哪个网站选音乐最新百度快速排名技术
  • 网站开发行业发展前景北京推广服务
  • 萝岗网站建设百度竞价包年推广是怎么回事
  • 怎么样建设企业网站百度电脑版下载安装
  • ic外贸网站建设营销型网站外包
  • 教做黏土手工的网站网站关键词查询网址
  • 企业网络推广网站建设人民日报最新消息
  • 固戍做网站的公司网站推广的方法
  • wordpress返回插件seo优质友链购买
  • 优秀网站模板百度seo运营工作内容
  • 兰州模板网站建设线上销售方案
  • 网站备案接入商变更百度拍照搜题
  • 佘山做网站手机网站模板
  • 国内简约网站设计深圳网络推广平台
  • 网站建设用什么软件好seo优化推广公司
  • 免费的建筑设计网站windows优化大师怎么下载
  • 网站地图怎样做seo研究中心超逸seo
  • 怎么做网站的营销百度点击优化
  • 建设网站的目的和内容湖南网站托管
  • 沈阳网站备案软文范例100字以内
  • 网站500错误是什么意思昆明seo排名
  • 自助建站系统加盟seo企业优化方案