当前位置: 首页 > news >正文

嵌入式软件工程师待遇沧州网站优化

嵌入式软件工程师待遇,沧州网站优化,网站源码和模板,做网站时的兼容问题目录 前言 一、根据坐标经纬度计算两点距离(5种方法) 1.方法一 2.方法二 3.方法三 4.方法四 5.方法五 5.1 POM引入第三方依赖 5.2 代码 6.测试结果对比 二、校验经纬度是否在制定区域内 1.判断一个坐标是否在圆形区域内 2.判断一个坐标是否…

 

目录

前言

一、根据坐标经纬度计算两点距离(5种方法)

1.方法一

2.方法二

3.方法三

4.方法四

5.方法五

5.1 POM引入第三方依赖

5.2 代码

6.测试结果对比

二、校验经纬度是否在制定区域内

1.判断一个坐标是否在圆形区域内

2.判断一个坐标是否在一个多边形区域内

3.结果

总结


前言

        在开发项目中会用到根据两点坐标计算之间距离的算法,网上也找了很多的方法,多多少少会存在一些问题的。以下方法已经在我本地运行通过,利用百度地图拾取坐标系统和百度地图测距工具进行测试,现将其整理了一下。以供大家参考:


一、根据坐标经纬度计算两点距离

1.方法一

package com.test.java.util;/*** 坐标位置相关util*/
public class PositionUtil {/*** 赤道半径(单位:米)*/private static final double EQUATOR_RADIUS = 6378137;/*** 方法一:(反余弦计算方式)** @param longitude1 第一个点的经度* @param latitude1  第一个点的纬度* @param longitude2 第二个点的经度* @param latitude2  第二个点的纬度* @return 返回距离,单位m*/public static double getDistance1(double longitude1, double latitude1, double longitude2, double latitude2) {// 纬度double lat1 = Math.toRadians(latitude1);double lat2 = Math.toRadians(latitude2);// 经度double lon1 = Math.toRadians(longitude1);double lon2 = Math.toRadians(longitude2);// 纬度之差double a = lat1 - lat2;// 经度之差double b = lon1 - lon2;// 计算两点距离的公式double s = 2 * Math.asin(Math.sqrt(Math.pow(Math.sin(a / 2), 2) + Math.cos(lat1) * Math.cos(lat2) * Math.pow(Math.sin(b / 2), 2)));// 弧长乘赤道半径, 返回单位: 米s = s * EQUATOR_RADIUS;return s;}}

2.方法二

package com.test.java.util;/*** 坐标位置相关util*/
public class PositionUtil {/*** 地球平均半径(单位:米)*/private static final double EARTH_AVG_RADIUS = 6371000;/*** 方法二:(反余弦计算方式)** @param longitude1 第一点的经度* @param latitude1  第一点的纬度* @param longitude2 第二点的经度* @param latitude2  第二点的纬度* @return 返回的距离,单位m*/public static double getDistance3(double longitude1, double latitude1, double longitude2, double latitude2) {// 经纬度(角度)转弧度。弧度作为作参数,用以调用Math.cos和Math.sin// A经弧度double radiansAX = Math.toRadians(longitude1);// A纬弧度double radiansAY = Math.toRadians(latitude1);// B经弧度double radiansBX = Math.toRadians(longitude2);// B纬弧度double radiansBY = Math.toRadians(latitude2);// 公式中“cosβ1cosβ2cos(α1-α2)+sinβ1sinβ2”的部分,得到∠AOB的cos值double cos = Math.cos(radiansAY) * Math.cos(radiansBY) * Math.cos(radiansAX - radiansBX) + Math.sin(radiansAY) * Math.sin(radiansBY);// System.out.println("cos = " + cos); // 值域[-1,1]// 反余弦值double acos = Math.acos(cos);// System.out.println("acos = " + acos); // 值域[0,π]// System.out.println("∠AOB = " + Math.toDegrees(acos)); // 球心角 值域[0,180]// 最终结果return EARTH_AVG_RADIUS * acos;}}

3.方法三

基于谷歌地图的计算公式计算距离

package com.test.java.util;/*** 坐标位置相关util*/
public class PositionUtil {/*** 地球平均半径(单位:米)*/private static final double EARTH_AVG_RADIUS = 6371000;/*** 经纬度转化为弧度(rad)** @param d 经度/纬度*/private static double rad(double d) {return d * Math.PI / 180.0;}/*** 方法三:(基于googleMap中的算法得到两经纬度之间的距离,计算精度与谷歌地图的距离精度差不多。)** @param longitude1 第一点的经度* @param latitude1  第一点的纬度* @param longitude2 第二点的经度* @param latitude2  第二点的纬度* @return 返回的距离,单位m*/public static double getDistance2(double longitude1, double latitude1, double longitude2, double latitude2) {double radLat1 = rad(latitude1);double radLat2 = rad(latitude2);double a = radLat1 - radLat2;double b = rad(longitude1) - rad(longitude2);double s = 2 * Math.asin(Math.sqrt(Math.pow(Math.sin(a / 2), 2) + Math.cos(radLat1) * Math.cos(radLat2) * Math.pow(Math.sin(b / 2), 2)));s = s * EARTH_AVG_RADIUS;s = Math.round(s * 10000d) / 10000d;return s;}}

4.方法四

基于高德地图

package com.test.java.util;/*** 计算距离*/
public class PositionUtil {/*** 方法四:(高德地图计算方法)** @param longitude1 第一点的经度* @param latitude1  第一点的纬度* @param longitude2 第二点的经度* @param latitude2  第二点的纬度* @return 返回的距离,单位m*/public static Double getDistance4(double longitude1, double latitude1, double longitude2, double latitude2) {if (longitude1 == 0 || latitude1 == 0 || latitude2 == 0 || longitude2 == 0) {return -1.0;}longitude1 *= 0.01745329251994329;latitude1 *= 0.01745329251994329;longitude2 *= 0.01745329251994329;latitude2 *= 0.01745329251994329;double var1 = Math.sin(longitude1);double var2 = Math.sin(latitude1);double var3 = Math.cos(longitude1);double var4 = Math.cos(latitude1);double var5 = Math.sin(longitude2);double var6 = Math.sin(latitude2);double var7 = Math.cos(longitude2);double var8 = Math.cos(latitude2);double[] var10 = new double[3];double[] var20 = new double[3];var10[0] = var4 * var3;var10[1] = var4 * var1;var10[2] = var2;var20[0] = var8 * var7;var20[1] = var8 * var5;var20[2] = var6;return Math.asin(Math.sqrt((var10[0] - var20[0]) * (var10[0] - var20[0]) + (var10[1] - var20[1]) * (var10[1] - var20[1]) + (var10[2] - var20[2]) * (var10[2] - var20[2])) / 2.0) * 1.27420015798544E7;// 结果四舍五入 保留2位小数//return new BigDecimal(distance).setScale(2, RoundingMode.HALF_UP).doubleValue();}}

5.方法五

该方法是利用第三方jar包计算

5.1 POM引入第三方依赖

    <!--用于计算两点之间的距离--><dependency><groupId>org.gavaghan</groupId><artifactId>geodesy</artifactId><version>1.1.3</version></dependency>

5.2 代码

package com.test.java.util;import org.gavaghan.geodesy.Ellipsoid;
import org.gavaghan.geodesy.GeodeticCalculator;
import org.gavaghan.geodesy.GeodeticCurve;
import org.gavaghan.geodesy.GlobalCoordinates;/*** 坐标位置相关util*/
public class PositionUtil {/*** 方法四:(利用第三方jar包计算)* 计算两个经纬度之间的距离** @param longitude1 第一点的经度* @param latitude1  第一点的纬度* @param longitude2 第二点的经度* @param latitude2  第二点的纬度* @param ellipsoid  计算方式* @return 返回的距离,单位m*/public static double getDistance4(double longitude1, double latitude1, double longitude2, double latitude2, Ellipsoid ellipsoid) {// 创建GeodeticCalculator,调用计算方法,传入坐标系、经纬度用于计算距离GlobalCoordinates firstPoint = new GlobalCoordinates(longitude1, latitude1);GlobalCoordinates secondPoint = new GlobalCoordinates(longitude2, latitude2);GeodeticCurve geoCurve = new GeodeticCalculator().calculateGeodeticCurve(ellipsoid, firstPoint, secondPoint);return geoCurve.getEllipsoidalDistance();}}

6.测试结果对比

这里我直接一起调用者4种方法,这样看结果也更加直观些。

    public static void main(String[] args) {double longitude1 = 117.344733;double latitude1 = 31.912334;double longitude2 = 117.272186;double latitude2 = 31.79422;double distance1 = PositionUtil.getDistance1(longitude1, latitude1, longitude2, latitude2);double distance2 = PositionUtil.getDistance2(longitude1, latitude1, longitude2, latitude2);double distance3 = PositionUtil.getDistance3(longitude1, latitude1, longitude2, latitude2);double distance4 = PositionUtil.getDistance4(longitude1, latitude1, longitude2, latitude2);double distance5 = PositionUtil.getDistance4(longitude1, latitude1, longitude2, latitude2, Ellipsoid.Sphere);double distance6 = PositionUtil.getDistance4(longitude1, latitude1, longitude2, latitude2, Ellipsoid.WGS84);System.out.println("方法1算出的距离:" + distance1);System.out.println("方法2算出的距离:" + distance2);System.out.println("方法3算出的距离:" + distance3);System.out.println("方法4算出的距离:" + distance4);System.out.println("方法4-Sphere算出的距离:" + distance5);System.out.println("方法4-WGS84算出的距离:" + distance6);}

可以看出,前四个方法算出的距离相对较小。而且main方法中提供的测试数据也是我自身的真实数据,结合百度地图的测距工具,我个人推荐前四个方法,与实际的误差相对较小。

二、校验经纬度是否在制定区域内

怎么样判断一个坐标点在指定的区域内?其中区域又会分为:圆,多边形和不规则的多边形。

1.判断一个坐标是否在圆形区域内

计算这个坐标点和圆心之间的距离,然后跟圆的半径进行比较,如果比半径大,就不在圆形区域内,如果小于等于圆的半径,则该坐标点在圆形区域内。

package com.test.java.util;import org.apache.commons.lang3.StringUtils;/*** 计算距离*/
public class PositionUtil {/*** 赤道半径(单位:米)*/private static final double EQUATOR_RADIUS = 6378137;/*** 方法一:(反余弦计算方式)** @param longitude1 第一个点的经度* @param latitude1  第一个点的纬度* @param longitude2 第二个点的经度* @param latitude2  第二个点的纬度* @return 返回距离,单位m*/public static double getDistance1(double longitude1, double latitude1, double longitude2, double latitude2) {// 纬度double lat1 = Math.toRadians(latitude1);double lat2 = Math.toRadians(latitude2);// 经度double lon1 = Math.toRadians(longitude1);double lon2 = Math.toRadians(longitude2);// 纬度之差double a = lat1 - lat2;// 经度之差double b = lon1 - lon2;// 计算两点距离的公式double s = 2 * Math.asin(Math.sqrt(Math.pow(Math.sin(a / 2), 2) + Math.cos(lat1) * Math.cos(lat2) * Math.pow(Math.sin(b / 2), 2)));// 弧长乘赤道半径, 返回单位: 米s = s * EQUATOR_RADIUS;return s;}/*** 判断坐标点是否在圆形区域内* 计算这个坐标点和圆心点之间的距离,然后跟圆的半径进行比较,如果比半径大,就不在圆形区域内,如果小于等于圆的半径,则该坐标点在圆形区域内** @param longitude1 第一点的经度* @param latitude1  第一点的纬度* @param longitude2 第二点的经度* @param latitude2  第二点的纬度* @param radius     圆形范围半径(单位:米)* @return true:不在区域内; false:在区域内*/public static boolean isInCircle(double longitude1, double latitude1, double longitude2, double latitude2, String radius) {if (StringUtils.isBlank(radius)) {throw new RuntimeException("请输入范围半径");}return getDistance1(longitude1, latitude1, longitude2, latitude2) > Double.parseDouble(radius);}}

2.判断一个坐标是否在一个多边形区域内

这里用到JAVA的一个类GeneralPath(由直线和二次和三次(B?zier)曲线构成的几何路径。 它可以包含多个子路径)使用这个类,结合传入的各顶点参数,画一个几何图形,并通过它自身的contains方法,判断该点是否在这个几何图形内。

package com.test.java.util;import org.apache.commons.lang3.StringUtils;import java.awt.geom.GeneralPath;
import java.awt.geom.Point2D;
import java.util.ArrayList;
import java.util.List;/*** 计算距离*/
public class PositionUtil {/*** 判断坐标点是否在多边形区域内** @param pointLon 要判断的点的经度* @param pointLat 要判断的点的纬度* @param lon      区域各顶点的经度数组* @param lat      区域各顶点的纬度数组* @return true:范围内; false:范围外*/public static boolean isInPolygon(double pointLon, double pointLat, double[] lon, double[] lat) {// 将要判断的横纵坐标组成一个点Point2D.Double point = new Point2D.Double(pointLon, pointLat);// 将区域各顶点的横纵坐标放到一个点集合里面List<Point2D.Double> pointList = new ArrayList<>();double polygonPointToX;double polygonPointToY;for (int i = 0; i < lon.length; i++) {polygonPointToX = lon[i];polygonPointToY = lat[i];Point2D.Double polygonPoint = new Point2D.Double(polygonPointToX, polygonPointToY);pointList.add(polygonPoint);}return check(point, pointList);}/*** 坐标点是否在多边形内** @param point   要判断的点的横纵坐标* @param polygon 组成的顶点坐标集合*/private static boolean check(Point2D.Double point, List<Point2D.Double> polygon) {GeneralPath generalPath = new GeneralPath();Point2D.Double first = polygon.get(0);// 通过移动到指定坐标(以双精度指定),将一个点添加到路径中generalPath.moveTo(first.x, first.y);polygon.remove(0);for (Point2D.Double d : polygon) {// 通过绘制一条从当前坐标到新指定坐标(以双精度指定)的直线,将一个点添加到路径中。generalPath.lineTo(d.x, d.y);}// 将几何多边形封闭generalPath.lineTo(first.x, first.y);generalPath.closePath();// 测试指定的 Point2D 是否在 Shape 的边界内。return generalPath.contains(point);}}

3.结果

    public static void main(String[] args) {double distance1 = PositionUtil.getDistance1(longitude1, latitude1, longitude2, latitude2);System.out.println("坐标与圆心的距离:" + distance1);String radius1 = "10000";boolean inCircle1 = PositionUtil.isInCircle(longitude1, latitude1, longitude2, latitude2, radius1);System.out.println("校验坐标是否在圆形范围内:" + inCircle1);String radius = "15000";boolean inCircle2 = PositionUtil.isInCircle(longitude1, latitude1, longitude2, latitude2, radius);System.out.println("校验坐标是否在圆形范围内:" + inCircle2);double pointLon = 117.274984;double pointLat = 31.790718;// 坐标在多边形范围内的参数:double[] lon = {117.272559, 117.276224, 117.278649, 117.273924};double[] lat = {31.791247, 31.792812, 31.78982, 31.788539};// 坐标在多边形范围外的参数:double[] lon1 = {117.291001, 117.299705, 117.298035, 117.291216};double[] lat1 = {31.806576, 31.806814, 31.802319, 31.802196};boolean a = PositionUtil.isInPolygon(pointLon, pointLat, lon, lat);boolean b = PositionUtil.isInPolygon(pointLon, pointLat, lon1, lat1);System.out.println("校验坐标是否在多边形范围内:" + a);System.out.println("校验坐标是否在多边形范围内:" + b);}

 

 


总结

        这样的计算方式得到的距离并非是真实的距离,可以说是逻辑距离(直线距离),但其距离也已经很准确。不过毕竟是通过逻辑计算得到的距离,若要求高准确性的距离信息的话,还是借助第三方的地图api接口获取比较合适。

如果这篇文章对您有所帮助,或者有所启发的话,求一键三连:点赞、评论、收藏➕关注,您的支持是我坚持写作最大的动力。

http://www.yidumall.com/news/61554.html

相关文章:

  • 做场景秀的网站网站的seo
  • 水泵网站站群建设批量优化网站软件
  • 做英文兼职的网站百度seo优化哪家好
  • 国外photoshop素材网站seo免费诊断电话
  • 怎么使用电脑是做网站网站推广要点
  • 南充网站建设设计略奥交换链接营销成功案例
  • 建设网站几种方法网上推广
  • 做公司网站哪个好如何优化seo技巧
  • php网站只能打开首页电商培训内容有哪些
  • 在国外做盗版电影网站亿驱动力竞价托管
  • 做企业网站报价山东进一步优化
  • wordpress后台拿webshell的方法电脑网络优化软件
  • 网站开发价格表河南推广网站的公司
  • 网站建设合同书下载湖南网站建设推广优化
  • 做网站筹钱需要多少钱广州推动优化防控措施落地
  • 大连做网站谁家售后好百度学术免费查重入口
  • 网站开发工程师swot分析正规微商免费推广软件
  • 南庄九江网站建设西安seo顾问
  • 网站导航结构seo推广方案怎么做
  • 网站开发作业网络营销渠道策略
  • 网站留言模板搜索引擎优化seo应用
  • 建网站程序怎么写自助建站系统
  • 福建 建设网站建设网站的基本流程
  • 网站建设 服务器怎么才能建立一个网站卖东西
  • 网站申请支付宝接口合肥网络seo推广服务
  • 建设网站需要体现的流程有哪些内容百度经验怎么赚钱
  • 没有网站可以icp备案seo小白入门教学
  • 模板网站哪家靠谱黑帽seo排名优化
  • 广州越秀区核酸检测点查询seo关键词优化怎么做
  • 设计一套网页要多少钱排名优化公司口碑哪家好