当前位置: 首页 > news >正文

河南省建设厅网站师林峰象山关键词seo排名

河南省建设厅网站师林峰,象山关键词seo排名,建设网站关键词怎么写,合肥企业建网站目标 背影 BP神经网络的原理 BP神经网络的定义 BP神经网络的基本结构 BP神经网络的神经元 BP神经网络的激活函数, BP神经网络的传递函数 数据 神经网络参数 基于BP神经网络 性别识别的MATLAB代码 效果图 结果分析 展望 背影 男人体内蛋白质比例大,女生…

目标
背影
BP神经网络的原理
BP神经网络的定义
BP神经网络的基本结构
BP神经网络的神经元
BP神经网络的激活函数,
BP神经网络的传递函数
数据
神经网络参数
基于BP神经网络 性别识别的MATLAB代码
效果图
结果分析
展望

背影

男人体内蛋白质比例大,女生脂肪比例大,而蛋白质密度比脂肪大,因此相同体积的男生比女生重。身高和体重和性别具有相关性,通过身高和体重,可以一定程度判断性别,本文用BP神经网络,以身高、体重为输入因子,以性别为输出,进行建模,训练测试,达到识别性别的目的

BP神经网络的原理

BP神经网络的定义

人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实现其功能的核心是算法。BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称为BP算法,它的基本思想是梯度下降法,利用梯度搜索技术,以期使网络的实际输出值和期望输出值的误差均方差为最小。

BP神经网络的基本结构

基本BP算法包括信号的前向传播和误差的反向传播两个过程。即计算误差输出时按从输入到输出的方向进行,而调整权值和阈值则从输出到输入的方向进行。正向传播时,输入信号通过隐含层作用于输出节点,经过非线性变换,产生输出信号,若实际输出与期望输出不相符,则转入误差的反向传播过程。误差反传是将输出误差通过隐含层向输入层逐层反传,并将误差分摊给各层所有单元,以从各层获得的误差信号作为调整各单元权值的依据。通过调整输入节点与隐层节点的联接强度和隐层节点与输出节点的联接强度以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

bp神经网络的神经元

神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
神经网络由多个神经元构成,下图就是单个神经元的图1所示:
在这里插入图片描述
。。。。。。。。。。。。。。。。。。。。。。。。图1 ,神经元模型

bp神经网络激活函数及公式

在这里插入图片描述
![在这里插入图片描述](https://img-blog.csdnimg.cn/29edde342c3945939ad5945145ca8509.png在这里插入图片描述

BP神经网络传递函数及公式

图2是Sigmoid函数和双极S函数的图像,其中Sigmoid函数的图像区域是0到1,双极S函数的区间是正负1,归一化的时候要和传递函数的区域相对应,不然,可能效果不好
神经网络就是将许多个单一的神经元联结在一起,这样,一个神经元的输出就可以是另一个神经元的输入。
例如,下图就是一个简单的神经网络:在这里插入图片描述
在这里插入图片描述

基于BP神经网络的性别识别

基本模型通过

通过采集的男女生身高和体重,进行BP神经网络建模,以身高 和体重为输入变量,以性别为输出变量,进行训练和测试,实现BP神经网络的性别识别

数据

在这里插入图片描述

神经网络参数

三层神经网络,传递函数logsig , tansig,训练函数自适应动量因子梯度下降函数,学习率0.01,学习目标0.001,最大迭代次数100

MATLAB编程代码

clc
clear
close all
%% 读入数据
xlsfile=‘student.xls’;
[data,label]=getdata(xlsfile);

num = [data label];
m=200;
n = randperm(size(num,1));
input_train=num(n(1:m),1:2)‘;
%训练数据的输入数据
output_train=num(n(1:m),3)’;
%训练数据的输出数据
input_test=num(n(m+1:end),1:2)‘;
%测试数据的输入数据
output_test=num(n(m+1:end),3)’;
%测试数据的输出数据
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
%训练数据的输入数据的归一化
[outputn,outputps]=mapminmax(output_train);
%训练数据的输出数据的归一化de
%% BP网络训练
% %初始化网络结构
net=newff(minmax(inputn),[12,1],{‘logsig’,‘tansig’},‘trainlm’);
%net.trainParam.max_fail = 9;
net.trainParam.epochs=2000;
%最大迭代次数
net.trainParam.lr=0.01;
%学习率
net.trainParam.goal=0.0001;
%学习目标
%网络训练
net=train(net,inputn,outputn);
%% BP网络预测
%预测数据归一化

inputn_test=mapminmax(‘apply’,input_test,inputps);

%网络预测输出
an=sim(net,inputn_test);

%网络输出反归一化
BPoutput=round(mapminmax(‘reverse’,an,outputps));

%% 结果分析
figure(1)
plot(BPoutput(1,:),‘ro’)
%预测的结果数据画图-代表虚线,O代表圆圈标识,r代表红色
hold on
plot(output_test(1,:),‘k*’);
%期望数据,即真实的数据画图,-代表实现,就是代表的标识,k代表黑色
legend(‘预测输出’,‘期望输出’)%标签
title(‘BP神经网络测试效果’,‘fontsize’,12)%标题 字体大小为12
ylabel(‘类别’,‘fontsize’,12)%Y轴
xlabel(‘样本’,‘fontsize’,12)%X轴
set(gca,‘YTick’,1:2)
set(gca,‘YTickLabel’,{‘男’,‘女’})
ylim([0.8 2.2])

%预测误差
error=BPoutput-output_test;
figure
plot(error(1,:),‘-*’)
title(‘BP网络预测试误差’,‘fontsize’,12)
ylabel(‘误差’,‘fontsize’,12)
xlabel(‘样本’,‘fontsize’,12)

效果图

在这里插入图片描述

在这里插入图片描述

结果分析

从效果图上看,BP神经网络能很好的实现对性别的识别,BP神经网络是一种成熟的神经,相对于其他神经网络,拥有很多的训练函数,传递函数,可以调节的参数非常多,对各种问题都可以达到一个比较理想的效果,关键看如何调试参数,选择训练传递函数,有疑问或者其他应用方面,欢迎大家扫描下面的二维码

展望

针对神经网络供工具箱,可以自己写函数的代入并原本的工具箱函数,可以有很多种改进方法

http://www.yidumall.com/news/61194.html

相关文章:

  • 免费自制网站建设福州seo网站推广优化
  • 做直播网站有哪些外贸新手怎样用谷歌找客户
  • 贵州网站建设维护企业查询系统官网天眼查
  • 网站开发毕业论文参考文献百度指数有什么作用
  • 做淘客网站要多大的服务器销售crm客户管理系统
  • Pc端做社区网站用什么框架今日疫情最新消息全国31个省
  • 备案网站域名查询找人帮忙注册app推广
  • 网站咨询弹窗是怎么做的最新新闻事件今天疫情
  • 网站做行业认证好处搜外seo
  • 怎么查在哪个网站做的备案谷歌浏览器官网下载手机版
  • 可以中英切换的网站怎么做怎样优化网站关键词排名靠前
  • 网站做SEO优化上海最新发布最新
  • 网站建设基本流程网络推广是以企业产品或服务
  • html css 教程seo和sem是什么
  • 淘宝网(淘宝网)温州seo排名优化
  • 用meteor框架做的微博网站今日足球最新预测比分
  • 大学网站建设技术方案百度在西安有分公司吗
  • 做vip兼职设计师的网站有哪些新产品推广方案范文
  • 政府网站建设应用工作方案重庆seo标准
  • 网站开发课设心得体会拉新app推广接单平台
  • 自己怎么做云购网站杭州seo网站推广排名
  • 织梦做的网站如何修改安徽建站
  • 湖北建设工程造价协会网站全球搜索引擎排行榜
  • 手机网站开发 html5百度电商平台app
  • 创新的网站建设排行榜不需要验证码的广告平台
  • 淘宝客网站推广怎么做凡科建站后属于自己的网站吗
  • 网站开发需要学习百度我的订单
  • wordpress中文4.8.1网站关键词排名手机优化软件
  • 展开描述建设一个网站的具体步骤seo博客是什么意思
  • 淘宝客服推销做网站的技巧手机打开国外网站app