当前位置: 首页 > news >正文

建设网站的法律可行性海口百度seo公司

建设网站的法律可行性,海口百度seo公司,设计竞赛网,保定哪家公司做网站1 填充 在上一节中,我们的卷积步骤如下: 可以发现输入是 3 3 3\times3 33,输出是 2 2 2\times2 22,这样可能会导致原始图像的边界丢失了许多有用信息,如果应用多层卷积核,累积丢失的像素就更多了&#…

1 填充

在上一节中,我们的卷积步骤如下:
在这里插入图片描述
可以发现输入是 3 × 3 3\times3 3×3,输出是 2 × 2 2\times2 2×2,这样可能会导致原始图像的边界丢失了许多有用信息,如果应用多层卷积核,累积丢失的像素就更多了,为了解决这个问题,可以采用填充方法

填充(padding):在输入图像的边界填充元素(通常填充元素是0)

例如我们对下面的输入图像进行填充,形状由 3 × 3 3\times3 3×3变为 5 × 5 5\times5 5×5,这样它的输入会变成 4 × 4 4\times4 4×4
在这里插入图片描述
通常,如果我们添加 p h p_{h} ph 行填充(大约一半在顶部,一半在底部)和 p h p_{h} ph 列填充(左侧大约一半,右侧一半),则输出形状将为:
( n h − k h + p h + 1 ) × ( n w − k w + p w + 1 ) 。 (n_h-k_h+p_h+1)\times(n_w-k_w+p_w+1)。 (nhkh+ph+1)×(nwkw+pw+1)
即意味着输出的高度和宽度将分别增加 p h p_{h} ph p h p_{h} ph

在许多情况下,我们需要设置 p h = k h − 1 p_h=k_h-1 ph=kh1 p w = k w − 1 p_w=k_w-1 pw=kw1 ,使输入和输出具有相同的高度和宽度, 这样可以在构建网络时更容易地预测每个图层的输出形状

  • 如果 k h k_h kh 是奇数,我们将在高度的两侧填充 p h / 2 p_h/2 ph/2 行,宽度同理。
  • 如果 k h k_h kh 是偶数,则一种可能性是在输入顶部填充 ⌈ p h / 2 ⌉ \lceil p_h/2\rceil ph/2 行,在底部填充 ⌊ p h / 2 ⌋ \lfloor p_h/2\rfloor ph/2 行,宽度同理。

卷积神经网络中卷积核的高度和宽度通常为奇数,例如1、3、5或7。 这样保持空间维度的同时,我们可以在顶部和底部填充相同数量的行,在左侧和右侧填充相同数量的列。下面的例子展示了填充后和不填充两种情况下,经过 3 × 3 3\times3 3×3卷积核做卷积操作后的输入图像形状

import torch
from torch import nndef comp_covn2d(conv2d,x):# 因为通常卷积层的输入是多通道的图像,x=x.reshape((1,1)+x.shape)y=conv2d(x)return y.reshape(y.shape[2:])# 去掉前两个维度(batch_size和num_channels),只关心卷积后的特征图的高度和宽度。conv2d_padding=nn.Conv2d(1,1,kernel_size=3,padding=1)
conv2d=nn.Conv2d(1,1,kernel_size=3)x=torch.rand(size=(8,8))print("padding:",comp_covn2d(conv2d_padding,x).shape)
print("nopadding:",comp_covn2d(conv2d,x).shape)

运行结果
在这里插入图片描述

当卷积核的高度和宽度不同时,我们可以填充不同的高度和宽度,使输出和输入具有相同的高度和宽度。在如下示例中,我们使用高度为5,宽度为3的卷积核,高度和宽度两边的填充分别为2和1。

conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape

运行结果
在这里插入图片描述

2 步幅

有时,我们可能希望大幅降低图像的宽度和高度。例如,如果我们发现原始的输入分辨率十分冗余,则可以使用步幅概念,快速的降低输出的维数

在计算互相关时,卷积窗口从输入张量的左上角开始,向下、向右滑动。 在前面的例子中,我们默认每次滑动一个元素。但是,有时候为了高效计算或是缩减采样次数,卷积窗口可以跳过中间位置,每次滑动多个元素。

将每次滑动元素的数量称为步幅(stride),下面是在上面例子中,使用垂直步幅为3,水平步幅为2进行卷积操作
在这里插入图片描述
通常,当垂直步幅为 s h s_h sh 、水平步幅为 s w s_{w} sw 时,输出形状为 ⌊ ( n h − k h + p h + s h ) / s h ⌋ × ⌊ ( n w − k w + p w + s w ) / s w ⌋ . \lfloor(n_h-k_h+p_h+s_h)/s_h\rfloor \times \lfloor(n_w-k_w+p_w+s_w)/s_w\rfloor. ⌊(nhkh+ph+sh)/sh×⌊(nwkw+pw+sw)/sw.

如果我们设置了 p h = k h − 1 p_h=k_h-1 ph=kh1 p h = k h − 1 p_h=k_h-1 ph=kh1,则输出形状将简化为 ⌊ ( n h + s h − 1 ) / s h ⌋ × ⌊ ( n w + s w − 1 ) / s w ⌋ \lfloor(n_h+s_h-1)/s_h\rfloor \times \lfloor(n_w+s_w-1)/s_w\rfloor ⌊(nh+sh1)/sh×⌊(nw+sw1)/sw
如果输入的高度和宽度可以被垂直和水平步幅整除,则输出形状将为 ( n h / s h ) × ( n w / s w ) (n_h/s_h) \times (n_w/s_w) (nh/sh)×(nw/sw)
我们将高度和宽度的步幅设置为2,从而将输入的高度和宽度减半。

conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, x).shape

运行结果
在这里插入图片描述

http://www.yidumall.com/news/59373.html

相关文章:

  • 网站做任务 炸金花网络营销渠道策略
  • 网站页面数怎么做线上宣传推广方式
  • 做交友网站 犯法吗最近有新病毒出现吗
  • 做网站竞价没有点击率公司网络推广排名定制
  • 网站建设技术标准百度seo推广计划类型包括
  • 网站建设技术合作合同优化网站教程
  • 番禺响应式网站开发如何进行网站性能优化
  • 万户网络技术有限公司深圳seo
  • 网页游戏网站网址b站推广网站2024mmm
  • 河南比较出名的外贸公司长沙关键词优化新行情报价
  • 哪有做外单的图片素材网站营销推广公司案例
  • 美国做调研的网站蚂蚁bt
  • vs网站开发实例今日军事新闻头条最新
  • 天津做美缝的网站企业网站seo点击软件
  • 建设企业网站收费seo就业前景
  • 纳森网络做网站多少钱seo排名怎么做
  • 微网站建站南宁网
  • wordpress 小工具 调用网站优化什么意思
  • 网站开发包括网站的等过程谷歌搜索入口中文
  • 网站建设域名申请seo推广优化外包价格
  • 深圳网站建设 联雅广州网站建设系统
  • 在哪个网站上做蓝思测评百度竞价开户3000
  • 在线音乐制作网站中铁建设集团有限公司
  • 怎么建立自己的网站平台多少钱网上有免费的网站吗
  • 企业网站的建设流程包含哪些环节?seo优化技术厂家
  • 阿里万网站建设seo网络营销公司
  • 民治做网站联系电话qq推广网站
  • 重庆市做网站的公司自媒体135网站免费下载安装
  • 公司网站建设推广江门百度seo公司
  • html做网站项目案例湖南专业关键词优化