当前位置: 首页 > news >正文

深圳网站建设公司为什百度地图排名怎么优化

深圳网站建设公司为什,百度地图排名怎么优化,网站建设常用模板下载,网站建设的课程概述 骑士周游算法,叫做“马踏棋盘算法”或许更加直观。在国际象棋8x8的棋盘中,马也是走“日字”进行移动,相应的产生了一个问题:“如果要求马 在每个方格只能进入一次,走遍全部的64个方格需要如何行进?”…

概述

骑士周游算法,叫做“马踏棋盘算法”或许更加直观。在国际象棋8x8的棋盘中,马也是走“日字”进行移动,相应的产生了一个问题:“如果要求马 在每个方格只能进入一次,走遍全部的64个方格需要如何行进?”这就是著名的 骑士周游算法的由来。
在这里插入图片描述

思路

相信大家看到这个问题首先想到就是回溯
马踏棋盘问题(骑士周游问题) 实际上是图的深度优先搜索(DFS)的应用。
如果使用回溯(就是深度优先搜索) 来解决,假如马儿踏了53个点,走到了第53个,坐标(1,0),发现已经走到尽头,没办法,那就只能回退了,查看其他的路径,就
在棋盘上不停的回溯

基于回溯的解决方案

  1. 创建棋盘chessBoard,是一个二维数组;
  2. 将当前位置设置为已经访问,然后根据当前位置,计算马还能走哪些位置,并放入到一个集合中(ArrayList),最多有8个位置,每走一步,就使用step+1;
  3. 遍历arrayList中存放的所有位置,看看哪个可以走通;
  4. 判断马儿是否完成了任务,使用step和应该走的步数(即棋盘格子数-1)比较,如果没有达到数量,则表示没有完成任务,将整个棋盘置0;
    注:马 不同的走法(策略),会得到不同的结果,效率也会有影响(优化)。

代码实现

public class HorseChessBoard {private static int X;//棋盘的列数private static int Y;//棋盘的行数//创建一个数组, 标记棋盘的各个位置是否被访问过private static boolean visited[];//试用一个属性,标记是否棋盘的所有位置都被访问过了private static boolean finished;//如果为true,表示成功public static void main(String[] args) {System.out.println("开始执行骑士周游算法~");//测试X = 8;Y = 8;int row = 1;//马儿初始位置的行,从1开始编号int column = 1;//马儿初始位置的列,从1开始编号//创建棋盘int[][] chessboard = new int[X][Y];visited = new boolean[X*Y];//初始值都是false//测试一下耗时long start = System.currentTimeMillis();traversalCheessBoard(chessboard,row-1,column-1,1);long end = System.currentTimeMillis();System.out.println("共耗时"+(end - start)+"ms");//输出棋盘的最终状况for (int[] rows : chessboard) {for (int step : rows) {System.out.print(step+"\t");}System.out.println();}System.out.println("骑士周游算法结束");}/*** 骑士周游问题算法* @param chessBoard 棋盘* @param row 马儿当前位置的行 从0开始* @param column 马儿当前位置的列 从0开始* @param step 是第几步,初始位置是第1步*/public static void traversalCheessBoard(int[][] chessBoard,int row,int column,int step){chessBoard[row][column] = step;//row = 4; X=8; column=4; 4*8+4=36;visited[row*X+column] = true;//标记该位置已经访问//获取当前位置可以走的下一个位置的集合ArrayList<Point> ps = next(new Point(column, row));//遍历pswhile (!ps.isEmpty()){Point p = ps.remove(0);//取出下一个可以走的位置//判断该点是否已经访问过if(!visited[p.y*X+p.x]){//说明还没访问过traversalCheessBoard(chessBoard,p.y,p.x,step+1);}}//判断马儿是否完成了任务,使用step和应该走的步数(即棋盘格子数-1)比较,//如果没有达到数量,则表示没有完成任务,将整个棋盘置0;//说明: step<X*Y成立的情况有两种//1.棋盘到目前位置,仍然没有走完//2.棋盘处于回溯过程if (step<X*Y&&!finished){chessBoard[row][column]=0;visited[row * X + column] = false;}else {finished = true;}}/*** 根据当前位置(Point) ,计算马儿还能走哪些位置(Point),并放入到一个集合中(ArrayList),最多有八个位置* @param curPoint* @return*/public static ArrayList<Point> next(Point curPoint){//创建一个ArrayListArrayList<Point> ps = new ArrayList<>();//创建一个PointPoint p1 = new Point();//判断马儿下一步是否可以走,若可以,将这个位置放入集合//判断马儿是否可以走  位置5if ((p1.x=curPoint.x-2)>=0 && (p1.y = curPoint.y-1)>=0){ps.add(new Point(p1));}//判断马儿是否可以走  位置6if ((p1.x=curPoint.x-1)>=0 && (p1.y = curPoint.y-2)>=0){ps.add(new Point(p1));}//判断马儿是否可以走  位置7if ((p1.x=curPoint.x+1) < X && (p1.y = curPoint.y-2)>=0){ps.add(new Point(p1));}//判断马儿是否可以走  位置0if ((p1.x=curPoint.x+2) < X && (p1.y = curPoint.y-1)>=0){ps.add(new Point(p1));}//判断马儿是否可以走  位置1if ((p1.x=curPoint.x+2) < X && (p1.y = curPoint.y+1)< Y){ps.add(new Point(p1));}//判断马儿是否可以走  位置2if ((p1.x=curPoint.x+1)<X && (p1.y = curPoint.y+2)<Y){ps.add(new Point(p1));}//判断马儿是否可以走  位置3if ((p1.x=curPoint.x-1)>=0 && (p1.y = curPoint.y+2)<Y){ps.add(new Point(p1));}//判断马儿是否可以走  位置4if ((p1.x=curPoint.x-2)>=0 && (p1.y = curPoint.y+1)<Y){ps.add(new Point(p1));}return ps;}
}

效率分析

采用回溯的方案思路上自然是可行的,那么它的效率究竟如何呢?可以说很不乐观!测算下来差不多要40秒左右,优化的空间很大。
在这里插入图片描述

回溯分析与贪心优化

我们思考可以在此思考一下上面解决方案的是否有可以优化的地方?能否用贪心算法进行优化呢?

  1. 我们获取当前位置,可以走的下一个位置的集合:
    ArrayList ps = next(new Point(column,row));
  2. 需要对ps中所有Point 下一步的所有集合数目进行非递减排序;
    a. 递减是:9,7,6,5,4…
    b. 递增排序:4,5,6,7,8…
    c. 非递减排序: 1,2,2,3,3,4,4,4,4,4,4,4,5,8,10…
    d. 非递增排序: 9,9,9,8,7,5,3…
  3. 如果下一步的选择越少,意味着回溯时的步骤越少,相应的效率也会越高,所以我们应该采用非递减排序,使得回溯的代价尽可能的低。

核心优化代码

我们不妨编写一个方法,根据当前这一步的所有下一步的选择位置,进行非递减排序,以求减少回溯的次数

public static void sort(ArrayList<Point> ps){ps.sort(new Comparator<Point>(){@Overridepublic int compare(Point o1, Point o2) {//获取到o1的下一步的所有位置个数int count1 = next(o1).size();//获取到o2的下一步的所有位置个数int count2 = next(o2).size();if (count1<count2){return -1;}else if (count1==count2){return 0;}else {return 1;}}});}

这样,在上面的回溯算法中,我们可以先对ps进行排序处理,再进行后面的测算

		//获取当前位置可以走的下一个位置的集合ArrayList<Point> ps = next(new Point(column, row));//对ps进行排序,排序的规则就是对ps的所有的Point对象的下一步的位置数目进行非递减排序sort(ps);//遍历pswhile (!ps.isEmpty()){Point p = ps.remove(0);//取出下一个可以走的位置//判断该点是否已经访问过if(!visited[p.y*X+p.x]){//说明还没访问过traversalCheessBoard(chessBoard,p.y,p.x,step+1);}}

效率分析

经过贪心算法的优化后,相同的配置下,测算时间直接降到了50ms,效率比之前提升600倍。还是很可观的提升的。
在这里插入图片描述

小结

本节,先是采用回溯算法对骑士周游问题进行了拆解,而后利用贪心算法对回溯算法进行了优化解决了骑士周游问题。相信借此我们对贪心算法的应用应该都有了更深层次的理解,算法千万条,应用第一条,只有在合适的场景才能发挥出其最大的作用。


关注我,共同进步,每周至少一更。——Wayne

http://www.yidumall.com/news/57051.html

相关文章:

  • 成都医院做网站建设天津百度推广电话号码
  • 义乌制作网站淘宝seo优化怎么做
  • 安徽政府网站建设站长工具备案查询
  • 网站开发多少钱一天是营销策划方案ppt范文
  • 婚恋交友网站建设策划windows清理优化大师
  • 今日新闻江西上海关键词优化排名哪家好
  • 哪里可以找到制作网站的公司厦门人才网唯一官方网站登录入口
  • 南山商城网站建设哪家公司靠谱百度竞价排名名词解释
  • wordpress仿站divcssb站视频推广
  • 郑州发布今天最新通告seo公司上海牛巨微
  • 网站中二级导航栏怎么做如何在百度发布信息
  • 盘锦网站建设公司2021时事政治热点50条
  • 基本网站怎么做广州商务网站建设
  • 行业网站大全各大网站排名
  • 咸阳商城网站开发设计百度登录入口百度
  • 手机网站相关如何制作网站赚钱
  • wordpress链接视频抖音搜索seo
  • 西安网站制作工程师站内推广
  • 网站开发任务书网络推广公司专业网络
  • 石家庄做网站制作大连seo建站
  • 网站设计页面如何做居中什么叫百度竞价推广
  • 一起来做网站17做网站需要哪些技术
  • 芜湖做公司网站东莞关键字排名优化
  • 如何自己做免费网站百度广告一级代理
  • 自己设计网页作业的感悟上海自动seo
  • 新疆电信网站备案seo论坛
  • cpa怎么做网站app拉新一手渠道商
  • 怎样做网站吸引客户企业的网络推广
  • 做自己的网站有什么用seo成功的案例和分析
  • 移商网站建设电商平台哪个最好最可靠