当前位置: 首页 > news >正文

非洲用什么网站做采购域名搜索

非洲用什么网站做采购,域名搜索,网站优化柳州,电脑管理系统文章目录 💗背包问题💛背包问题的变体🧡0/1 背包问题的数学定义💚解决背包问题的方法💙例子 💗解决背包问题的一般步骤?💗例题💗总结 ❤️❤️❤️❤️❤️博客主页&…

文章目录

  • 💗背包问题
    • 💛背包问题的变体
    • 🧡0/1 背包问题的数学定义
    • 💚解决背包问题的方法
    • 💙例子
  • 💗解决背包问题的一般步骤?
  • 💗例题
  • 💗总结

在这里插入图片描述

❤️❤️❤️❤️❤️博客主页:lyyyyrics❤️❤️❤️❤️❤️
在这里插入图片描述

💗背包问题

背包问题(Knapsack Problem)是一类经典的组合优化问题,在计算机科学和数学中有广泛应用。其基本问题是:

  • 输入:给定一个容量为 W W W 的背包和 n n n 个物品,每个物品 i i i 有一个重量 w i w_i wi 和一个价值 v i v_i vi
  • 目标:选择若干个物品放入背包,使得总重量不超过背包的容量 W W W,并且总价值最大化。

💛背包问题的变体

  1. 0/1 背包问题:每个物品只能选择一次,即要么选中(1)要么不选(0)。
  2. 分数背包问题:每个物品可以分割,即可以选择物品的一部分。
  3. 多重背包问题:每个物品有多个副本,可以选择多个相同的物品。
  4. 多维背包问题:背包有多个限制条件,例如容量和体积等。

🧡0/1 背包问题的数学定义

目标函数:
maximize ∑ i = 1 n c i ⋅ x i \text{maximize} \sum_{i=1}^{n} c_i \cdot x_i maximizei=1ncixi
其中, n n n 表示物品的数量, c i c_i ci 表示物品 i i i 的价值。

约束条件:
∑ i = 1 n w i ⋅ x i ≤ C \sum_{i=1}^{n} w_i \cdot x_i \leq C i=1nwixiC
其中, w i w_i wi 表示物品 i i i 的重量, C C C 表示背包的容量。

其它约束条件:
x i ∈ { 0 , 1 } x_i \in \{0,1\} xi{0,1}
i = 1 , 2 , 3 , … , n i = 1,2,3,\ldots,n i=1,2,3,,n
其中, x i x_i xi 表示物品 i i i 是否被选中。

💚解决背包问题的方法

解决背包问题的方法有很多,包括动态规划、分支定界法、贪心算法(适用于分数背包问题)以及各种近似算法和启发式算法等。

💙例子

假设有一个背包容量为 50 的背包,有以下物品:

物品重量价值
11060
220100
330120

目标是选择物品使得总重量不超过 50 且总价值最大化。在这个例子中,最佳选择是选取物品 2 和物品 3,总重量为 50,总价值为 220。

💗解决背包问题的一般步骤?

背包问题是一个经典的优化问题,可以通过动态规划算法来解决。下面是解决背包问题的一般步骤:

  1. 确定问题的约束条件:背包的容量限制和物品的重量和价值。

  2. 定义状态:将问题拆解为多个子问题,定义状态为背包的容量和可选择的物品。

  3. 定义状态转移方程:根据子问题的定义,确定状态之间的关系。例如,对于背包问题,可以定义状态转移方程为f(i,j),表示在前i个物品中选择,背包容量为j时,可以获得的最大价值。则可以得到状态转移方程:f(i,j) = max(f(i-1,j), f(i-1,j-w[i])+v[i]),其中w[i]和v[i]分别表示第i个物品的重量和价值。

  4. 确定初始条件:确定边界条件,即背包容量为0时,价值为0。

  5. 通过动态规划算法计算最优解:根据状态转移方程和初始条件,利用循环或递归的方式计算最优解。

  6. 回溯最优解:根据计算得到的最优解,可以通过回溯的方式确定选择了哪些物品放入背包中,从而得到最终的解。

需要注意的是,背包问题的解决方法还包括贪心算法、分支界限算法等。具体选择哪种方法取决于问题的约束条件和需要优化的目标。

💗例题

题目链接
题目:

在这里插入图片描述

样例输出和输入:

在这里插入图片描述

这道题并不是leetcode的那种接口的模式,而是ACM模式,我们需要进行完整的输入和输出,我们先分析第一个样例:

0123
容量241
价值1054

第一个问题是给定一个背包容量,求出当背包的容量不用装满时的最大价值,意思就是我们选出的物品的总的容量可以小于背包的容量,也可以等于背包的容量,这时,我们可以第一个物品和三个物品的价值是最大的。
总价值为14,
第二个问题是我们必须将 背包容量给塞满,求塞满的状态的物品的最大价值,这种情况下有可能是没有结果的,因为无法选出能将背包塞满的组合 ,所以这时候就输出零。但是这个例子是可以输出结果的,塞满的情况应该是第二个物品和第三个物品,总价值是9,所以最后输出14和9。

算法原理:
状态表示:dp[i][j]-----表示选到第i个位置时的所有选法中的不超过总容积j的最大价值。
状态转移方程:在这里插入图片描述
这是不把背包填满的情况下的状态转移方程,还有一个问题就是需要将背包填满。
在这里插入图片描述
所以这里如果要用到前一个状态的话,应该判断一下前一个状态是否是-1,如果前一个状态是-1的话,就表示这种情况根本不存在 ,所以不能选择这种状态在这里插入图片描述

初始化:第一个问题的初始化只需要将dp表初始化为0,第二个问题的初始化上面已经讨论过了。
填表顺序:也是按照从左上角到右下角,依次填表。
返回值:返回dp[n][V]
代码展示:

#include <cstring>
#include <iostream>
#include<string>
using namespace std;//数据范围
const int N = 1010;
//n个数据,V为背包的总容量,v表示单个物品的所占容积,w表示单个物品所含的价值
int n, V, v[N], w[N];
//i表示第i个位置,j表示总的容积
int dp[N][N];int main()
{//输入总数据,和总容积cin >> n >> V;for (int i = 1;i <= n;i++){cin >> v[i] >> w[i];}//解决第一问for (int i = 1;i <= n;i++){//j表示容量for (int j = 1;j <= V;j++){//不选的情况dp[i][j] = dp[i - 1][j];//如果能选,则和之前不选的情况求一个maxif (j >= v[i])dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);}}//输出最后一个dp状态cout << dp[n][V] << endl;//重置dp表,将表中数据重置为0memset(dp, 0, sizeof dp);//单独初始化第一排的后面的位置,因为如果没有任何物品根本不可能有价值,所以初始化为-1for (int i = 1;i <= V;i++){//初始化不存在dp的位置dp[0][i] = -1;}for (int i = 1;i <= n;i++){//j表示容量for (int j = 1;j <= V;j++){//可以不选dp[i][j] = dp[i - 1][j];//如果要选择当前位置的话需要考虑前一个状态是否是-1,选不到的情况 if (j >= v[i] && dp[i - 1][j - v[i]] != -1)dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);}}//如果不存在选满的情况,直接返回0,否则返回dp[n][V]位置的值cout << (dp[n][V] == -1 ? 0 : dp[n][V]) << endl;return 0;
}

代码优化:
可以利用滚动数组进行优化:

#include <cstring>
#include <iostream>
#include<string>
using namespace std;//数据范围
const int N = 1010;
//n个数据,V为背包的总容量,v表示单个物品的所占容积,w表示单个物品所含的价值
int n, V, v[N], w[N];
//i表示第i个位置,j表示总的容积
int dp[N];int main()
{//输入总数据,和总容积cin >> n >> V;for (int i = 1;i <= n;i++)cin >> v[i] >> w[i];//解决第一问for (int i = 1;i <= n;i++)//j表示容量for (int j = V;j >= v[i];j--)//修改遍历顺序//如果能选,则和之前不选的情况求一个maxdp[j] = max(dp[j], dp[j - v[i]] + w[i]);//输出最后一个dp状态cout << dp[V] << endl;//重置dp表,将表中数据重置为0memset(dp, 0, sizeof dp);//单独初始化第一排的后面的位置,因为如果没有任何物品根本不可能有价值,所以初始化为-1for (int i = 1;i <= V;i++)//初始化不存在dp的位置dp[i] = -1;for (int i = 1;i <= n;i++)//j表示容量for (int j = V;j >= v[i];j--)//修改遍历顺序//如果能选,则和之前不选的情况求一个maxif(dp[j-v[i]]!=-1)dp[j] = max(dp[j], dp[j - v[i]] + w[i]);//如果不存在选满的情况,直接返回0,否则返回dp[n][V]位置的值cout << (dp[V] == -1 ? 0 : dp[V]) << endl;return 0;
}

运行结果:
在这里插入图片描述

💗总结

通过对0/1背包问题的分析和动态规划解法的详细讲解,我们可以看到这种经典问题在算法设计中的重要性。0/1背包问题不仅是许多实际应用的基础,也是理解和掌握动态规划思想的一个重要实例。

在解决0/1背包问题时,关键在于构建状态转移方程并合理使用空间和时间资源。通过递归和迭代的方法,我们能更好地理解背包问题的解法,优化算法效率,并提升解决复杂问题的能力。

希望这篇博客能帮助你理解0/1背包问题的基本原理和解法,同时激发你对动态规划和算法设计的进一步兴趣和探索。未来的学习中,不妨尝试更多的变种背包问题和动态规划问题,以不断提升自己的算法技能和编程水平。

http://www.yidumall.com/news/55352.html

相关文章:

  • 平顶山北京网站建设免费发广告的网站
  • 做网站开发要注册品牌营销公司
  • 做权重网站seo怎么去优化
  • 东莞做网站那家好2345网址导航怎么彻底删掉
  • 最新wordpress模板推广优化方案
  • 网站开发网站设计的标准免费大数据网站
  • 美工做图素材网站2021最火关键词
  • 河池市住房和城乡建设厅网站百度官方官网
  • 北京网络科技公司简介搜狗seo培训
  • 手机做图片的网站腾讯企点官网下载
  • 苏州企业网站制作宁波关键词网站排名
  • 什么专业是做网站网络广告营销
  • 怎么做班级网站seo关键词排名优化系统源码
  • 网站怎么推广出去比较好网页入口网站推广
  • 微网站搭建教程最佳磁力吧ciliba搜索引擎
  • 渭南公司做网站网络公司网络推广服务
  • 深圳服装网站建设交换链接营销实现方式解读
  • 网站和数字界面设计师2023上海又出现疫情了
  • 织梦网站主页底小程序开发公司
  • 沙河网站建设深圳关键词推广整站优化
  • wordpress 富文本编辑器北京网站优化外包
  • wordpress整站加密网优工程师前景和待遇
  • 网络和网站的区别电商网站开发
  • 政府的网站应该怎么做门户网站怎么做
  • 微网站建设哪家好东莞谷歌推广公司
  • ftp中如何找到网站首页精准客源引流平台
  • 百度站长推送厦门排名推广
  • 注册了一个域名怎么做网站搜索引擎关键词广告
  • 如何做网站效果更好网站营销策划
  • 网站建设及管理使用情况汇报百度关键词挖掘