当前位置: 首页 > news >正文

商城网站建设需要注意什么百度竞价推广是什么

商城网站建设需要注意什么,百度竞价推广是什么,沈阳网站定制开发,申请网站平台怎么做前言:前面已经通过采集拿到了图片,并且也手动对图片做了标注。接下来就要通过 Tensorflow.js 基于 mobileNet 训练模型,最后就可以实现在采集中对图片进行自动分类了。这种功能在应用场景里就比较多了,比如图标素材站点&#xff0…

前言:

前面已经通过采集拿到了图片,并且也手动对图片做了标注。接下来就要通过 Tensorflow.js 基于 mobileNet 训练模型,最后就可以实现在采集中对图片进行自动分类了。

这种功能在应用场景里就比较多了,比如图标素材站点,用户通过上传一个图标,系统会自动匹配出相似的图标,还有二手平台,用户通过上传闲置物品图片,平台自动给出分类等,这些也都是前期对海量图片进行了标注训练而得到一个损失率极低的模型。下面就通过简答的代码实现一个小的动漫分类。

环境:

Node

Http-Server

Parcel

Tensorflow

编码:

1. 训练模型

1.1. 创建项目,安装依赖包

npm install @tensorflow/tfjs --legacy-peer-deps
npm install @tensorflow/tfjs-node-gpu --legacy-peer-deps

1.2. 全局安装 Http-Server

npm install i http-server

1.3. 下载 mobileNet 模型文件 (网上有下载)

1.4. 根目录下启动 Http 服务 (开启跨域),用于 mobileNet 和训练结果的模型可访问

http-server--cors-p8080

1.5. 创建训练执行脚本 run.js

const tf = require('@tensorflow/tfjs-node-gpu');const getData = require('./data');
const TRAIN_PATH = './动漫分类/train';
const OUT_PUT = 'output';
const MOBILENET_URL = 'http://127.0.0.1:8080/data/mobilenet/web_model/model.json';(async () => {const { ds, classes } = await getData(TRAIN_PATH, OUT_PUT);console.log(ds, classes);//引入别人训练好的模型const mobilenet = await tf.loadLayersModel(MOBILENET_URL);//查看模型结构mobilenet.summary();const model = tf.sequential();//截断模型,复用了86个层for (let i = 0; i < 86; ++i) {const layer = mobilenet.layers[i];layer.trainable = false;model.add(layer);}//降维,摊平数据model.add(tf.layers.flatten());//设置全连接层model.add(tf.layers.dense({units: 10,activation: 'relu'//设置激活函数,用于处理非线性问题}));model.add(tf.layers.dense({units: classes.length,activation: 'softmax'//用于多分类问题}));//设置损失函数,优化器model.compile({loss: 'sparseCategoricalCrossentropy',optimizer: tf.train.adam(),metrics:['acc']});//训练模型await model.fitDataset(ds, { epochs: 20 });//保存模型await model.save(`file://${process.cwd()}/${OUT_PUT}`);
})();

1.6. 创建图片与 Tensor 转换库 data.js

const fs = require('fs');
const tf = require("@tensorflow/tfjs-node-gpu");const img2x = (imgPath) => {const buffer = fs.readFileSync(imgPath);//清除数据return tf.tidy(() => {//把图片转成tensorconst imgt = tf.node.decodeImage(newUint8Array(buffer), 3);//调整图片大小const imgResize = tf.image.resizeBilinear(imgt, [224, 224]);//归一化return imgResize.toFloat().sub(255 / 2).div(255 / 2).reshape([1, 224, 224, 3]);});
}const getData = async (traindir, output) => {let classes = fs.readdirSync(traindir, 'utf-8');fs.writeFileSync(`./${output}/classes.json`, JSON.stringify(classes));const data = [];classes.forEach((dir, dirIndex) => {fs.readdirSync(`${traindir}/${dir}`).filter(n => n.match(/jpg$/)).slice(0, 1000).forEach(filename => {const imgPath = `${traindir}/${dir}/${filename}`;data.push({ imgPath, dirIndex });});});console.log(data);//打乱训练顺序,提高准确度tf.util.shuffle(data);const ds = tf.data.generator(function* () {const count = data.length;const batchSize = 32;for (let start = 0; start < count; start += batchSize) {const end = Math.min(start + batchSize, count);console.log('当前批次', start);yield tf.tidy(() => {const inputs = [];const labels = [];for (let j = start; j < end; ++j) {const { imgPath, dirIndex } = data[j];const x = img2x(imgPath);inputs.push(x);labels.push(dirIndex);}const xs = tf.concat(inputs);const ys = tf.tensor(labels);return { xs, ys };});}});return { ds, classes };
}module.exports = getData;

1.7. 运行执行文件

noderun.js

2. 调用模型

2.1. 全局安装 parcel

npminstall i parcel

2.2. 创建页面 index.html

<scriptsrc="script.js"></script><inputtype="file"onchange="predict(this.files[0])"><br>

2.3. 创建模型调用预测脚本 script.js

import * as tf from'@tensorflow/tfjs';
import { img2x, file2img } from'./utils';const MODEL_PATH = 'http://127.0.0.1:8080/t7';
const CLASSES = ["假面骑士","奥特曼","海贼王","火影忍者","龙珠"];window.onload = async () => {const model = await tf.loadLayersModel(MODEL_PATH + '/output/model.json');window.predict = async (file) => {const img = await file2img(file);document.body.appendChild(img);const pred = tf.tidy(() => {const x = img2x(img);return model.predict(x);});const index = pred.argMax(1).dataSync()[0];console.log(pred.argMax(1).dataSync());let predictStr = "";if (typeof CLASSES[index] == 'undefined') {predictStr = BRAND_CLASSES[index];} else {predictStr = CLASSES[index];}setTimeout(() => {alert(`预测结果:${predictStr}`);}, 0);};
};

2.4. 创建图片 tensor 格式转换库 utils.js

import * as tf from'@tensorflow/tfjs';exportfunctionimg2x(imgEl){return tf.tidy(() => {const input = tf.browser.fromPixels(imgEl).toFloat().sub(255 / 2).div(255 / 2).reshape([1, 224, 224, 3]);return input;});
}exportfunctionfile2img(f) {returnnewPromise(resolve => {const reader = new FileReader();reader.readAsDataURL(f);reader.onload = (e) => {const img = document.createElement('img');img.src = e.target.result;img.width = 224;img.height = 224;img.onload = () => resolve(img);};});
}

2.5. 打包项目并运行

parcelindex.html

2.6. 运行效果

注意:

1. 模型训练过程报错

Input to reshape is a tensor with 50176 values, but the requested shape has 150528

1.1. 原因

张量 reshape 不对,实际输入元素个数与所需矩阵元素个数不一致,就是采集过来的图片有多种图片格式,而不同格式的通道不同 (jpg3 通道,png4 通道,灰色图片 1 通道),在将图片转换 tensor 时与代码里的张量形状不匹配。

1.2. 解决方法

一种方法是删除灰色或 png 图片,其二是修改代码 tf.node.decodeImage (new Uint8Array (buffer), 3)

http://www.yidumall.com/news/53833.html

相关文章:

  • 汕头网站制作全过程百度公司介绍
  • 做庭院的网站网络营销的发展前景
  • 网站服务器错误403深圳seo云哥
  • 网站制作流程视频教程永久免费用的在线客服系统
  • 阿里巴巴上做网站要多少钱友情链接代码美化
  • 自己电脑做网站优质网站
  • 河南省建设厅网站中州杯手机广告推广软件
  • 湖南网站推广建设公司关键词排名点击软件推荐
  • 交友网站开发的意义百度学术官网入口网页版
  • 大兴模版网站建设公司百度网盘app下载
  • 珠海网站建设 金碟中小企业网站制作
  • 广州外贸营销型网站广州疫情防控措施
  • .net做的网站怎么样整站seo排名外包
  • 百度怎么做自己网站长春网站制作设计
  • wordpress云建站系统线上推广方案模板
  • 做影视网站违法不厦门网络推广哪家强
  • 网站建设设计合同书上海百度首页优化
  • 网站的类型是什么意思推广服务商
  • 建行企业网站网络运营师
  • 做网站手机号抓取的公司全文搜索引擎有哪些
  • 沈阳专门代做网站的google谷歌搜索主页
  • 后台网站模板 html微信营销
  • 年报是否就是在工商网站做的万网域名注册教程
  • 做外贸进大公司网站新闻头条最新消息国家大事
  • 晨阳seo顾问seo教程优化
  • 网站开发页面怎么进百度长尾关键词挖掘工具
  • 网站开发和运行 法律廊坊网站seo
  • 明星个人网站建设需求分析广州网站运营专注乐云seo
  • 南京网站设计网站河北网站seo外包
  • 毕节做网站品牌网站建设制作