当前位置: 首页 > news >正文

广州互联网大厂公司有哪些益阳网站seo

广州互联网大厂公司有哪些,益阳网站seo,织梦做的网站页面打不开,手机论坛网站怎么做全文目录 概念哈希冲突及原因解决哈希冲突的方法闭散列线性探测二次探测扩容 开散列扩容 哈希的应用位图布隆过滤器 概念 通过映射关系将关键字映射到存储位置,并实现增删改查操作。 通过上面的方法构造出来的结构就叫哈希表(散列表)&#x…

全文目录

  • 概念
  • 哈希冲突及原因
  • 解决哈希冲突的方法
    • 闭散列
      • 线性探测
      • 二次探测
      • 扩容
    • 开散列
      • 扩容
  • 哈希的应用
    • 位图
    • 布隆过滤器

概念

通过映射关系将关键字映射到存储位置,并实现增删改查操作。

在这里插入图片描述

通过上面的方法构造出来的结构就叫哈希表(散列表),其中的映射关系叫做哈希函数

哈希冲突及原因

不同的关键字映射到同一个位置称为哈希冲突

原因:

哈希函数设计得不够合理

哈希函数设计原则:

  • 哈希函数的定义域包括所有关键码,散列表的空间位 n,其值域为 [ 0 , m − 1 ] [0,m - 1] [0,m1]
  • 计算出来的地址均匀分布在整个散列表中
  • 比较简单

其他类型哈希:

哈希函数需要将关键码进行取模操作,这就表示了当其他类型哈希时需要先将关键字转换为整型 —— 可以通过仿函数进行转换。

解决哈希冲突的方法

解决哈希冲突两种常见的方法是:闭散列和开散列

闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。

寻找“下一个”空位置的方法:线性探测和二次探测

线性探测

从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

在这里插入图片描述

缺点:

冲突连在一起容易发生数据堆积,不同的关键字占用了可利用的空位置,使得同一个效率下降,影响效率

二次探测

线性探测造成数据堆积的原因是寻找空位置的方式,为了避免数据堆积,二次探测寻找下一个位置的方式为:

H i = ( H 0 + i 2 ) % m H_i = (H_0 + i^2 ) \% m Hi=(H0+i2)%m, 或者: H i = ( H 0 − i 2 ) % m H_i = (H_0 - i^2 ) \% m Hi=(H0i2)%m。其中: i = 1 , 2 , 3 … i = 1,2,3… i=1,2,3 H 0 H_0 H0 是通过散列函数 H a s h ( x ) Hash(x) Hash(x) 对元素的关键码 k e y key key 进行计算得到的位置, m m m 是表的大小。

在这里插入图片描述

扩容

当哈希表的载荷因子达到一定大是进行扩容

在这里插入图片描述

开散列

开散列法又叫链地址法(开链法),将相同地址的关键字分为一个集合称为桶,通过单链表将桶中的元素链接起来。

在这里插入图片描述
在这里插入图片描述

扩容

随着插入的增加,冲突的可能性越来越大即一个桶中节点越来越多,影响哈希表的性能。开散列最好的情况是每个哈希桶都只有一个节点,所以当 元素个数 = = 桶的个数 元素个数 == 桶的个数 元素个数==桶的个数 时进行扩容较为合理

哈希的应用

位图

用一个比特位来存放某种状态,用来快速判断某个数据在不在。

模拟实现:

template<size_t N = 100>
class bitset
{
public:bitset(size_t n = N){_bit.resize(N / 8 + 1, 0);}bitset& set(size_t x, bool val = true){size_t i = x / 8;size_t j = x % 8;if (val){_bit[i] |= 1 << j;}else{_bit[i] &= ~(1 << j);}return *this;}bitset& set(){vector<char> tmp(N / 8 + 1, 1);_bit.swap(tmp);return *this;}bitset& reset(){vector<char> tmp(N / 8 + 1, 0);_bit.swap(tmp);return *this;}bitset& reset(size_t x){size_t i = x / 8;size_t j = x % 8;_bit[i] &= ~(1 << j);return *this;}bool test(size_t x) const{size_t i = x / 8;size_t j = x % 8;return _bit[i] & (1 << j);}private:vector<char> _bit;size_t _size;
};

缺点:

一般只能处理整型

布隆过滤器

用来快速检索数据是否存在,弥补位图只能处理整型的缺憾。

原理:

通过多个哈希函数,将一个数据映射到位图结构中。

但是可能对存在的情况存在一定的误判,误判概率取决于哈希函数的个数和空间的大小:参考文档

http://www.yidumall.com/news/53223.html

相关文章:

  • 网页制作培训班培训上海优化seo公司
  • 销售网站建设实验报告百度一下你就知道百度一下
  • 在阿里云做视频网站需要什么吉林网站seo
  • asp商业网站源码如何建一个自己的网站
  • 手机网站做桌面快捷方式网上商城建设
  • 分析网站建设前期的seo准备工作海外广告优化师
  • 日本做受网站郴州网络推广外包公司
  • 东莞市长安镇做网站站长综合查询工具
  • 网站建设美化汕头网站推广
  • 下载app并安装到手机国内做seo最好的公司
  • 名片在哪个网站做广告营销方式有哪几种
  • wordpress插入pdfseo基础优化包括哪些内容
  • 想做一个自己的网站国内优秀网页设计赏析
  • 域名空间网站建设百度官方下载安装
  • phpweb手机网站网站流量查询服务平台
  • 影视网站怎么做原创seo优化技术厂家
  • 自助建站实验报告竞价推广是做什么的
  • wordpress导航函数长沙谷歌seo
  • 合肥做网站公搜索 引擎优化
  • 微信开放平台登录百度seo教程
  • wordpress怎么修改图片网站优化排名
  • 有什么网站可以接设计单做bt最佳磁力搜索引擎
  • 网站流量钱是谁给的新东方托福班价目表
  • 做三级分销网站cms网站
  • 做美食网站的素材网络营销模式下品牌推广途径
  • 高端建设网站公司哪家好淘宝数据分析工具
  • 北京城乡建设厅网站营业推广的方式
  • wordpress评论邮箱通知功能seo在线培训
  • 网站建设流程图网站开发平台有哪些
  • 动易网站建设实训报告网络营销整合营销