当前位置: 首页 > news >正文

seo建站是什么意思太原搜索引擎优化招聘信息

seo建站是什么意思,太原搜索引擎优化招聘信息,东莞工业品网站建设,凯里做网站冒泡排序 算法步骤 不断的两两比较&#xff0c;这样当前最大的元素总是会排在最后面。所以称为冒泡。 图解算法 代码实现 public static int[] bubbleSort(int[] arr) {// i是排好了几个数for (int i 1; i < arr.length; i) {// flag标记当前循环是否调整了顺序&#xff0c…

冒泡排序

算法步骤

不断的两两比较,这样当前最大的元素总是会排在最后面。所以称为冒泡。

图解算法

在这里插入图片描述

代码实现


public static int[] bubbleSort(int[] arr) {// i是排好了几个数for (int i = 1; i < arr.length; i++) {// flag标记当前循环是否调整了顺序,如果没有调整,说明排序完成boolean flag = true;// arr.length - i控制数组尾巴for (int j = 0; j < arr.length - i; j++) {if (arr[j] > arr[j + 1]) {int tmp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = tmp;flag = false;}}if (flag) {break;}}return arr;
}

算法分析

稳定性:稳定
时间复杂度:最佳: O ( n ) O(n) O(n) ,最差: O ( n 2 ) O(n^2) O(n2), 平均: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)
排序方式:内部排序

选择排序

算法步骤

不断地选择最小/最大的元素和当前未排序序列的头进行交换

图解算法

在这里插入图片描述

代码实现

public static int[] selectionSort(int[] arr) {// 找到的元素放到第i个,未排序序列头for (int i = 0; i < arr.length - 1; i++) {// minIndex记录当前未排序的最小元素的索引int minIndex = i;for (int j = i + 1; j < arr.length; j++) {if (arr[j] < arr[minIndex]) {minIndex = j;}}// 交换if (minIndex != i) {int tmp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = tmp;}}return arr;
}

算法分析

稳定性:不稳定
时间复杂度:最佳: O ( n 2 ) O(n^2) O(n2) ,最差: O ( n 2 ) O(n^2) O(n2), 平均: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)
排序方式:内部排序

插入排序

算法步骤

就是扑克牌理牌。从前往后读取未排列序列的元素,拿到新元素后从后往前遍历已排序序列找到合适的位置插入。

图解算法

在这里插入图片描述

代码实现

public static int[] insertionSort(int[] arr) {for (int i = 1; i < arr.length; i++) {// preindex记录已排序序列的尾int preIndex = i - 1;// current是当前要插入的元素int current = arr[i];while (preIndex >= 0 && current < arr[preIndex]) {// 往后移arr[preIndex + 1] = arr[preIndex];preIndex -= 1;}arr[preIndex + 1] = current;}return arr;
}

算法分析

稳定性:稳定
时间复杂度:最佳: O ( n ) O(n) O(n) ,最差: O ( n 2 ) O(n^2) O(n2), 平均: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)
排序方式:内部排序

希尔排序

算法步骤

不断的按照增量来分出子数组的数量,子数组内部进行插入排序,然后缩小增量,减少分子数组的数量,然后接着插入排序,直到增量为1之后再进行一次插入排序即可。

算法图解

在这里插入图片描述

代码实现

public static int[] shellSort(int[] arr) {int n = arr.length;int gap = n / 2;while (gap > 0) {for (int i = gap; i < n; i++) {int current = arr[i];int preIndex = i - gap;// 插入排序while (preIndex >= 0 && arr[preIndex] > current) {arr[preIndex + gap] = arr[preIndex];preIndex -= gap;}arr[preIndex + gap] = current;}gap /= 2;}return arr;
}

算法分析

稳定性:不稳定
时间复杂度:最佳: O ( n l o g n ) O(nlogn) O(nlogn), 最差: O ( n 2 ) O(n^2) O(n2) 平均: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( 1 ) O(1) O(1)
排序方式:内部排序

归并排序

算法步骤

将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
就是让子数列内部有序,然后让两个子序列段间有序,不断重复直到整个序列有序。

图解算法

在这里插入图片描述

代码实现

public static int[] mergeSort(int[] arr) {if (arr.length <= 1) {return arr;}int middle = arr.length / 2;int[] arr_1 = Arrays.copyOfRange(arr, 0, middle);int[] arr_2 = Arrays.copyOfRange(arr, middle, arr.length);return merge(mergeSort(arr_1), mergeSort(arr_2));
}public static int[] merge(int[] arr_1, int[] arr_2) {int[] sorted_arr = new int[arr_1.length + arr_2.length];int idx = 0, idx_1 = 0, idx_2 = 0;while (idx_1 < arr_1.length && idx_2 < arr_2.length) {if (arr_1[idx_1] < arr_2[idx_2]) {sorted_arr[idx] = arr_1[idx_1];idx_1 += 1;} else {sorted_arr[idx] = arr_2[idx_2];idx_2 += 1;}idx += 1;}if (idx_1 < arr_1.length) {while (idx_1 < arr_1.length) {sorted_arr[idx] = arr_1[idx_1];idx_1 += 1;idx += 1;}} else {while (idx_2 < arr_2.length) {sorted_arr[idx] = arr_2[idx_2];idx_2 += 1;idx += 1;}}return sorted_arr;
}

算法分析

稳定性:稳定
时间复杂度:最佳: O ( n l o g n ) O(nlogn) O(nlogn), 最差: O ( n l o g n ) O(nlogn) O(nlogn), 平均: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( n ) O(n) O(n)
排序方式:外部排序

快速排序

算法步骤

从序列中随机挑出一个元素,做为 基准;通过一趟排序将待排序列分隔成独立的两部分,比基准小的在左边,比基准大的在右边,则可分别对这两部分子序列继续进行排序,以达到整个序列有序。

图解算法

在这里插入图片描述

代码实现

public static int partition(int[] array, int low, int high) {int pivot = array[high];int pointer = low;for (int i = low; i < high; i++) {if (array[i] <= pivot) {int temp = array[i];array[i] = array[pointer];array[pointer] = temp;pointer++;}System.out.println(Arrays.toString(array));}int temp = array[pointer];array[pointer] = array[high];array[high] = temp;return pointer;
}
public static void quickSort(int[] array, int low, int high) {if (low < high) {int position = partition(array, low, high);quickSort(array, low, position - 1);quickSort(array, position + 1, high);}
}

算法分析

稳定性:不稳定
时间复杂度:最佳: O ( n l o g n ) O(nlogn) O(nlogn), 最差: O ( n 2 ) O(n^2) O(n2),平均: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( l o g n ) O(logn) O(logn)
排序方式:内部排序

堆排序

算法步骤

堆排序是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆的性质:即子结点的值总是小于(或者大于)它的父节点。

图解算法

在这里插入图片描述

算法分析

稳定性:不稳定
时间复杂度:最佳: O ( n l o g n ) O(nlogn) O(nlogn), 最差: O ( n l o g n ) O(nlogn) O(nlogn), 平均: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( 1 ) O(1) O(1)
排序方式:内部排序

计数排序

算法步骤

http://www.yidumall.com/news/52.html

相关文章:

  • 宠物医院网站建设方案模板网站建设开发
  • 智联招聘网站多少钱做的网络运营怎么学
  • 民权平台网站建设2024年的新闻
  • 品牌网站建设解决北京seo优化排名
  • 微网站报价seo原创工具
  • 怎么帮人做网站网站排名怎么搜索靠前
  • 怎么做自己的网址安卓优化神器
  • wordpress解压子目录下电商seo优化
  • 邢台做网站费用百度资源分享网页
  • 中山快速做网站价格西安网站建设比较好的公司
  • 婚恋网站上认识人 带你做原油交易网站关键词搜索排名优化
  • 菲律宾做网站html网站模板免费
  • 营销型网站建设实战感想可以搜索国外网站的搜索引擎
  • 国内重大新闻事件2023简短网站优化技巧
  • 网站建设网站公司的序专业优化网站排名
  • 有实力高端网站设计地址媒体网站
  • 网站怎么做长尾词网站运营培训
  • 网站设计开发团队网络销售面试问题有哪些
  • 门户网站建设开发做网站的软件叫什么
  • 做网站教程第一课免费推广软件
  • 河南省罗山县做网站的公司2022最新国内新闻50条简短
  • 哪个网站做外贸好今天最近的新闻
  • 便宜做网站公司百度统计怎么用
  • wordpress 微软雅黑字体seo如何优化的
  • 广州网站设计首选柚米站长资讯
  • 厦门网直播赣州seo培训
  • 轻淘客一键做网站东莞免费网站建设网络营销
  • 广东企业微信网站建设手机seo关键词优化
  • 网站建设案例信息北京seo优化哪家好
  • 代理网站备案表汽车网络营销的方式有哪些