当前位置: 首页 > news >正文

徐州优化网站建设万能引流软件

徐州优化网站建设,万能引流软件,wordpress tag固定,58黄页网推广效果怎样什么是knn算法? KNN算法是一种基于实例的机器学习算法,其全称为K-最近邻算法(K-Nearest Neighbors Algorithm)。它是一种简单但非常有效的分类和回归算法。 该算法的基本思想是:对于一个新的输入样本,通过…

什么是knn算法?

KNN算法是一种基于实例的机器学习算法,其全称为K-最近邻算法(K-Nearest Neighbors Algorithm)。它是一种简单但非常有效的分类和回归算法。
该算法的基本思想是:对于一个新的输入样本,通过计算它与训练集中所有样本的距离,找到与它距离最近的K个训练集样本,然后基于这K个样本的类别信息来进行分类或回归预测。KNN算法中的“K”代表了在预测时使用的邻居数,通常需要手动设置。
KNN算法的主要优点是简单、易于实现,并且在某些情况下可以获得很好的分类或回归精度。但是,它也有一些缺点,如需要存储所有训练集样本、计算距离的开销较大、对于高维数据容易过拟合等。

KNN算法常用于分类问题,如文本分类、图像分类等,以及回归问题,如预测房价等。

我们这次学习机器学习的knn算法分别对前二维数据和前四维数据进行训练和可视化。

两个目标:

1、通过knn算法对iris数据集前两个维度的数据进行模型训练并求出错误率,最后进行可视化展示数据区域划分。
2、通过knn算法对iris数据集总共四个维度的数据进行模型训练并求出错误率,并对前四维数据进行可视化。

基本思路:

1、先载入iris数据集 Load Iris data
2、分离训练集和设置测试集split train and test sets
3、对数据进行标准化处理Normalize the data
4、使用knn模型进行训练Train using KNN
5、然后进行可视化处理Visualization
6、最后通过绘图决策平面plot decision plane

1、通过knn算法对iris数据集前两个维度的数据进行模型训练并求出错误率,最后进行可视化展示数据区域划分:

from sklearn import datasets
import numpy as np
### Load Iris data
iris = datasets.load_iris()
x = iris.data[:,:2]#前2个维度
# x = iris.data
y = iris.target
print("class labels: ", np.unique(y))
x.shape
y.shape
### split train and test sets
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y)
x_train.shape
print("Labels count in y:", np.bincount(y))
print("Labels count in y_train:", np.bincount(y_train))
print("Labels count in y_test:", np.bincount(y_test))
### Normalize the data
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(x_train)
x_train_std = sc.transform(x_train)
x_test_std = sc.transform(x_test)
print("TrainSets Orig mean:{}, std mean:{}".format(np.mean(x_train,axis=0), np.mean(x_train_std,axis=0)))
print("TrainSets Orig std:{}, std std:{}".format(np.std(x_train,axis=0), np.std(x_train_std,axis=0)))
print("TestSets Orig mean:{}, std mean:{}".format(np.mean(x_test,axis=0), np.mean(x_test_std,axis=0)))
print("TestSets Orig std:{}, std std:{}".format(np.std(x_test,axis=0), np.std(x_test_std,axis=0)))
### Train using KNN
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5, p=2, metric='minkowski')
knn.fit(x_train_std, y_train)
pred_test=knn.predict(x_test_std)
err_num = (pred_test != y_test).sum()
rate = err_num/y_test.size
print("Misclassfication num: {}\nError rate: {}".format(err_num, rate))#计算错误率
### Visualization
x_combined_std = np.vstack((x_train_std, x_test_std))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(x_combined_std, y_combined,
classifier=knn, test_idx=range(105,150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
#### plot decision plane
x_combined_std = np.vstack((x_train_std, x_test_std))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(x_combined_std, y_combined,
classifier=knn, test_idx=range(105,150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()

代码及其可视化效果截图:

在这里插入图片描述

2、通过knn算法对iris数据集总共四个维度的数据进行模型训练并求出错误率并进行可视化:

from sklearn import datasets
import numpy as np
iris = datasets.load_iris()
x = iris.data  #4个维度
# x = iris.data
y = iris.target
print("class labels: ", np.unique(y))
x.shape
y.shape
### split train and test sets
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y)
x_train.shape
print("Labels count in y:", np.bincount(y))
print("Labels count in y_train:", np.bincount(y_train))
print("Labels count in y_test:", np.bincount(y_test))
### Normalize the data
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(x_train)
x_train_std = sc.transform(x_train)
x_test_std = sc.transform(x_test)
print("TrainSets Orig mean:{}, std mean:{}".format(np.mean(x_train,axis=0), np.mean(x_train_std,axis=0)))
print("TrainSets Orig std:{}, std std:{}".format(np.std(x_train,axis=0), np.std(x_train_std,axis=0)))
print("TestSets Orig mean:{}, std mean:{}".format(np.mean(x_test,axis=0), np.mean(x_test_std,axis=0)))
print("TestSets Orig std:{}, std std:{}".format(np.std(x_test,axis=0), np.std(x_test_std,axis=0)))
### Train using KNN
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5, p=2, metric='minkowski')
knn.fit(x_train_std, y_train)
pred_test=knn.predict(x_test_std)
err_num = (pred_test != y_test).sum()
rate = err_num/y_test.size
print("Misclassfication num: {}\nError rate: {}".format(err_num, rate))#计算错误率
#四维可视化在二维或三维空间中是无法呈现的,但我们可以使用降维技术来可视化数据。在这种情况下,我们可以使用主成分分析(PCA)或线性判别分析(LDA)等技术将数据降到二维或三维空间中,并在此空间中可视化数据。
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.decomposition import PCA# Perform PCA to reduce the dimensionality from 4D to 3D
pca = PCA(n_components=3)
x_train_pca = pca.fit_transform(x_train_std)# Create a 3D plot of the first three principal components
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(111, projection='3d')# Plot the three classes in different colors
for label, color in zip(np.unique(y_train), ['blue', 'red', 'green']):ax.scatter(x_train_pca[y_train==label, 0], x_train_pca[y_train==label, 1], x_train_pca[y_train==label, 2], c=color, label=label, alpha=0.8)ax.set_xlabel('PC1')
ax.set_ylabel('PC2')
ax.set_zlabel('PC3')
ax.legend(loc='upper right')
ax.set_title('Iris Dataset - PCA')
plt.show()

四维可视化在二维或三维空间中是无法呈现的,但我们可以使用降维技术来可视化数据。在这种情况下,我们可以使用主成分分析(PCA)或线性判别分析(LDA)等技术将数据降到二维或三维空间中,并在此空间中可视化数据。
下面是代码效果图,展示如何使用PCA将四维数据降至三维,并在三维空间中可视化iris数据集:
在这里插入图片描述

将iris数据集的四维数据降至三维,并在三维空间中可视化了训练集。每个点代表一个数据样本,不同颜色代表不同的类别。我们可以看到,在三维空间中,有两个类别可以相对清晰地分开,而另一个类别则分布在两个主成分的中间。

我们要注意对于高维数据使用knn算法容易出现高维数据容易过拟合的情况,这是因为在高维空间中,数据点之间的距离变得很大,同时训练样本的数量相对于特征的数量很少,容易导致KNN算法无法很好地进行预测。

为了避免高维数据容易过拟合的情况,可以采取以下措施:

  1. 特征选择:选择有意义的特征进行训练,可以降低特征数量,避免过拟合。常用的特征选择方法有Filter方法、Wrapper方法和Embedded方法。

  2. 降维:可以通过主成分分析(PCA)等方法将高维数据映射到低维空间中,以减少特征数量,避免过拟合。

  3. 调整K值:KNN算法中的K值决定了邻居的数量,K值过大容易出现欠拟合,而K值过小容易出现过拟合。因此,可以通过交叉验证等方法来确定最佳的K值。

  4. 距离度量:KNN算法中的距离度量方法对结果影响较大,不同的距离度量方法会导致不同的预测结果。因此,可以尝试不同的距离度量方法,选择最优的方法。

  5. 数据增强:在数据量较少的情况下,可以通过数据增强的方法来增加训练样本,以提高模型的泛化能力。

希望通过这片文章能够进一步认识knn算法的原理及其应用。
今天是五一劳动节,在这里小马同学祝各位五一劳动节快乐!

http://www.yidumall.com/news/50707.html

相关文章:

  • 濮阳网站建设费用搜索引擎优化是做什么的
  • 历史网站怎么做app推广注册招代理
  • 电商网站开发公司杭州企业网站seo诊断报告
  • 网站开发需要多少钱怎样正规seo大概多少钱
  • wordpress网站注册不了手机百度下载
  • 一个最简单的产品展示的asp网站应该如何做百度一下百度首页登录
  • 毕节市政府网站建设水果网络营销策划方案
  • 东莞企业公司网站建设关键词优化排名软件哪家好
  • 优秀设计师的个人网站江门网站建设
  • 嘉兴网站建设方案外包郑州网络推广哪家口碑好
  • 建设和维护诈骗网站深圳百度快照优化
  • 阜阳做网站有吗如何进入网站
  • 网站全屏轮播代码 js简述企业网站推广的一般策略
  • web网站开发的详细步骤网站推广的内容
  • 昌平网站开发公司电话佛山seo代理计费
  • 公司网站建设需要显示什么河南靠谱seo地址
  • 邯郸怎么做网站广告软文是什么意思
  • 如何建立自己的免费网站seo自己怎么做
  • 客户做百度推广后修改网站url需要哪些流程淘宝补流量平台
  • 中国万网建站平台中牟网络推广
  • 彭水网站建设推广疫情最新情况
  • 日本设计网站推荐企业培训心得体会
  • wordpress php版本太低引擎搜索优化
  • 做h网站风险上海关键词优化按天计费
  • 北京网站建设多少钱时事新闻最新
  • 新闻网站原创内容建设百度数据中心
  • 诸城网站建设与制作chatgpt 链接
  • 制作网站设计的公司软文广告文案
  • 响应式网站建设服务器百度引流平台
  • 一定要知道的网站品牌营销策划怎么写