山东大型网站建设网络推广计划书范文
前言
CS小菜鸡控制理论入门
视频学习笔记
视频传送门:动态系统的建模与分析】9_一阶系统的频率响应_低通滤波器_Matlab/Simulink分析
拉普拉斯变换
F(s)=L{f(t)}=∫0∞f(t)e−stdtF(s)=\mathcal{L}\{f(t)\}=\int_0^\infty f(t)e^{-st}\mathrm{d}tF(s)=L{f(t)}=∫0∞f(t)e−stdt,其中s=σ+jωs=\sigma+j\omegas=σ+jω
L{f′(t)}=sF(s)−f(0)\mathcal{L}\{f'(t)\}=sF(s)-f(0)L{f′(t)}=sF(s)−f(0)
L{f′′(t)}=s2F(s)−sf(0)−f′(0)\mathcal{L}\{f''(t)\}=s^2F(s)-sf(0)-f'(0)L{f′′(t)}=s2F(s)−sf(0)−f′(0)
L{∫0tf(τ)d(τ)}=1sF(s)\mathcal{L}\{\int_0^t f(\tau)d(\tau)\}=\frac{1}{s}F(s)L{∫0tf(τ)d(τ)}=s1F(s)
一个电路例子:
e′=Li′′+Ri′+1cie'=Li''+Ri'+\frac{1}{c}ie′=Li′′+Ri′+c1i
sE(s)=Ls2I(s)+RsI(s)+1cI(s)sE(s)=Ls^2I(s)+RsI(s)+\frac{1}{c}I(s)sE(s)=Ls2I(s)+RsI(s)+c1I(s)
sE(s)=(Ls2+Rs+1c)I(s)sE(s)=(Ls^2+Rs+\frac{1}{c})I(s)sE(s)=(Ls2+Rs+c1)I(s)
I(s)=sLs2+Rs+1cE(s)I(s)=\frac{s}{Ls^2+Rs+\frac{1}{c}}E(s)I(s)=Ls2+Rs+c1sE(s)
常系数微分方程⟺\iff⟺线性时不变系统
非线性化系统:1.在平衡点处线性化 2.采用非线性化分析控制
拉普拉斯变换求解线性微分方程:
- 运用L\mathcal{L}L将ttt域转化到sss域;
- +−×÷+-\times \div+−×÷;
- 运用L−1\mathcal{L^{-1}}L−1将sss域转化到ttt域;
拉普拉斯逆变换
F(s)=5−ss2+5s+4F(s)=\frac{5-s}{s^2+5s+4}F(s)=s2+5s+45−s
F(s)=−3s+4+2s+1F(s)=\frac{-3}{s+4}+\frac{2}{s+1}F(s)=s+4−3+s+12
L−1[F(s)]=−3e−4t+2e−t\mathcal{L^{-1}}[F(s)]=-3e^{-4t}+2e^{-t}L−1[F(s)]=−3e−4t+2e−t
s=−4,−1s=-4,-1s=−4,−1:传递函数(Transfer Function)的极点(Poles)
一阶系统的单位阶跃响应(Step Response)
x˙(t)+gRx(t)=u(t)\dot{x}(t)+\frac{g}{R}x(t)=u(t)x˙(t)+Rgx(t)=u(t)
x(t)=CRg(1−e−gRt)x(t)=\frac{CR}{g}(1-e^{-\frac{g}{R}t})x(t)=gCR(1−e−Rgt)
时间常数t=τt=\taut=τ,满足x(τ)=1−1e=0.63x(\tau)=1-\frac{1}{e}=0.63x(τ)=1−e1=0.63
稳定(整定)时间 Tss=4τTss=4\tauTss=4τ
用于系统辨识:
假设 Tss=4Tss=4Tss=4,则τ=1=Rg\tau=1=\frac{R}{g}τ=1=gR
CRg=5⟹C=5\frac{CR}{g}=5\Longrightarrow C=5gCR=5⟹C=5
u(s)⟶as+a⟶x(s)u(s) \longrightarrow \frac{a}{s+a} \longrightarrow x(s)u(s)⟶s+aa⟶x(s):本质上是一个低通滤波器
频率响应
input
: Misin(ωt+ϕi)M_isin(\omega t+\phi_i)Misin(ωt+ϕi)
output
: M0sin(ωt+ϕ0)M_0sin(\omega t+\phi_0)M0sin(ωt+ϕ0)振幅响应:M0Mi=M\frac{M_0}{M_i}=MMiM0=M
幅角响应:ϕ0−ϕi=ϕ\phi_0-\phi_i=\phiϕ0−ϕi=ϕ
(一番数学推导…)
conclusion
MG=∣G(jω)∣M_G=|G(j\omega)|MG=∣G(jω)∣
ϕG=∠G(jω)\phi_G=\angle G(j\omega)ϕG=∠G(jω)