当前位置: 首页 > news >正文

网站的规划与建设女教师遭网课入侵直播

网站的规划与建设,女教师遭网课入侵直播,什么网站可以做饼图,阿里云网站建设方案分类预测 | MATLAB实现SSA-CNN麻雀算法优化卷积神经网络多特征分类预测 目录分类预测 | MATLAB实现SSA-CNN麻雀算法优化卷积神经网络多特征分类预测分类效果基本介绍模型描述程序设计参考文献分类效果 基本介绍 1.Matlab实现SSA-CNN麻雀算法优化卷积神经网络多特征分类预测&…

分类预测 | MATLAB实现SSA-CNN麻雀算法优化卷积神经网络多特征分类预测

目录

    • 分类预测 | MATLAB实现SSA-CNN麻雀算法优化卷积神经网络多特征分类预测
      • 分类效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考文献

分类效果

1
2
3
4

5
6

基本介绍

1.Matlab实现SSA-CNN麻雀算法优化卷积神经网络多特征分类预测,运行环境Matlab2018b及以上;
2.运行主程序MainSSA_CNNC即可,其余为函数文件,无需运行,可视化输出分类准确率,可在下载区获取数据和程序内容。
3.输入15个特征,输出4类标签。
4.SSA优化CNN的超参数,一共有9个参数需要优化,分别是学习率、迭代次数、批处理样本、第一层卷积层的核大小和数量、第2层卷积层的核大小和数量,以及两个全连接层的神经元数量。

模型描述

卷积神经网络(CNN)中超参数众多,人工选择比较困难,利用麻雀搜索算法(SSA)对卷积神经网络中的参数进行优化,消除人工操作的不确定性。本模型共优化8 个超参数,分别是迭代次数、学习率、第1 层卷积核大小和数量、第2 层卷积核大小和数量,以及2 个全连接层的神经元数量(conv 表示卷积层,fc 表示全连接层)。本文建立的模型组成包括输入层、2 层卷积层、2 层激活层、2 层全连接层和输出层。SSA CNN 模型预测具体实现步骤如下。
第1 步:对数据进行归一化处理。
第2 步:设定初始参数,包括种群中的个体总数、子群体数、每个子群体中的麻雀数、最大迭代次数、发现者的数量及SSA 其他参数等。
第3 步:初始化种群并定义适应度函数,以CNN的预测值与实际值的均方误差最小化作为适应度函数,SSA 的目的就是找到一组超参数,用这组超参数训练得到的CNN 的误差能够最小化。
第4 步:计算适应度函数值并排序。
第5 步:确定每个子群体中的最优解、最差解和全局最优解。
第6 步:更新麻雀位置,获取当前的新位置,如果新位置比以前的位置更好就更新它,若达到设定的最大迭代次数,则将其输出,否则返回继续寻优,直到得到最好的麻雀坐标。
第7 步:将寻优得到的麻雀坐标代入CNN 模型中,得到预测模型的输出。

7

程序设计

  • 完整程序和数据私信博主。
%种群初始化
X0=initialization(pop,dim,ub,lb);
X = X0;
%计算初始适应度值
fitness = zeros(1,pop);
for i = 1:popfitness(i) =  fobj(X(i,:));
end
[fitness, index]= sort(fitness);%升排序
BestF = fitness(1);
WorstF = fitness(end);
GBestF = fitness(1);%全局最优适应度值
for i = 1:popX(i,:) = X0(index(i),:);
end
curve=zeros(1,Max_iter);
GBestX = X(1,:);%全局最优位置
X_new = X;
for i = 1: Max_iterdisp(['第',num2str(i),'次迭代'])BestF = fitness(1);WorstF = fitness(end);R2 = rand(1);for j = 1:PDNumberif(R2<ST)X_new(j,:) = X(j,:).*exp(-j/(rand(1)*Max_iter));elseX_new(j,:) = X(j,:) + randn()*ones(1,dim);end     endfor j = PDNumber+1:pop
%        if(j>(pop/2))if(j>(pop - PDNumber)/2 + PDNumber)X_new(j,:)= randn().*exp((X(end,:) - X(j,:))/j^2);else%产生-11的随机数A = ones(1,dim);for a = 1:dimif(rand()>0.5)A(a) = -1;endend AA = A'*inv(A*A');     X_new(j,:)= X(1,:) + abs(X(j,:) - X(1,:)).*AA';endendTemp = randperm(pop);SDchooseIndex = Temp(1:SDNumber); for j = 1:SDNumberif(fitness(SDchooseIndex(j))>BestF)X_new(SDchooseIndex(j),:) = X(1,:) + randn().*abs(X(SDchooseIndex(j),:) - X(1,:));elseif(fitness(SDchooseIndex(j))== BestF)K = 2*rand() -1;X_new(SDchooseIndex(j),:) = X(SDchooseIndex(j),:) + K.*(abs( X(SDchooseIndex(j),:) - X(end,:))./(fitness(SDchooseIndex(j)) - fitness(end) + 10^-8));endend%边界控制for j = 1:popfor a = 1: dimif length(ub)>1if(X_new(j,a)>ub(a))X_new(j,a) =ub(a);endif(X_new(j,a)<lb(a))X_new(j,a) =lb(a);endelseif(X_new(j,a)>ub)X_new(j,a) =ub;endif(X_new(j,a)<lb)X_new(j,a) =lb;endendendend %更新位置for j=1:popfitness_new(j) = fobj(X_new(j,:));endfor j = 1:popif(fitness_new(j) < GBestF)GBestF = fitness_new(j);GBestX = X_new(j,:);   endendX = X_new;fitness = fitness_new;%排序更新[fitness, index]= sort(fitness);%排序BestF = fitness(1);WorstF = fitness(end);for j = 1:popX(j,:) = X(index(j),:);endcurve(i) = GBestF;disp(['current iteration is: ',num2str(i), ', best fitness is: ', num2str(GBestF)]);
end

参考文献

[1] https://blog.csdn.net/kjm13182345320/article/details/128713044?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128700127?spm=1001.2014.3001.5501

http://www.yidumall.com/news/45879.html

相关文章:

  • 做网站插音乐怎么隐藏免费二级域名申请网站
  • 福州关键词搜索排名西安seo关键词排名
  • 书画艺术网站建设app排名优化公司
  • 小程序开发需要多少钱惠州百度关键词优化
  • 网站建设制作介绍河南最新社会舆情信息
  • 沧州做公司网页的公司有哪些项链seo关键词
  • 怎么做最火的视频网站自己怎么制作一个网站
  • 关于销售网站建设的短文软件开发网站
  • 电影宣传网站开发设计营销软件有哪些
  • 网站的二维码怎么做的百度做广告多少钱一天
  • 企业网站设计流程培训机构哪家好
  • 经营性网站 手续杭州企业seo
  • 旅游景点网站建设现状企业查询天眼查
  • 成都快速建站模板搜索引擎关键词怎么选
  • 西安做网站选哪家怎样做网站的优化、排名
  • dedecms做手机网站百度搜索关键词设置
  • 有没有网站专门做cnc招聘百度竞价价格
  • 做一手房的网站黄页88网络营销宝典
  • 网站建设基础代码百度快速排名软件下载
  • 做聚会的网站深圳网站开发
  • 专做企业网站的网络优化工资一般多少
  • html5移动网站开发淘宝代运营公司
  • wordpress amp设置六盘水seo
  • 马鞍山网站建设 明达内容营销是什么意思
  • wordpress打开页面很慢seo营销外包
  • o2o模式的电商平台网站有哪些seo诊断a5
  • 微网站制作价格电子商务营销的概念
  • 有哪些网站用java做的蚌埠网络推广
  • 自己如何做购物网站网站建设技术
  • 陵水网站建设装修设计公司免费推广引流平台有哪些