当前位置: 首页 > news >正文

做架构图的网站电商软文范例100字

做架构图的网站,电商软文范例100字,宿迁做网站 宿迁网站建设,展览设计制作公司timm(Torch Image Models)是一个在PyTorch上构建的图像模型库,它提供了一系列预训练的深度学习模型,使得研究人员和开发者可以方便地进行图像分类、目标检测等任务。 使用timm库创建模型时,如何确定模型的名字 使用…

timm(Torch Image Models)是一个在PyTorch上构建的图像模型库,它提供了一系列预训练的深度学习模型,使得研究人员和开发者可以方便地进行图像分类、目标检测等任务。
在这里插入图片描述

使用timm库创建模型时,如何确定模型的名字

使用timm.list_models方法,找到timm支持的模型

import timmif __name__ == '__main__':all_pretrained_models_available = timm.list_models(pretrained=True)print(all_pretrained_models_available)for i in all_pretrained_models_available:print(i)

运行结果:
很多,这里只列出一部分啊!

resnet152
resnet152d
resnet200d
resnetblur50
resnetrs50
resnetrs101
resnetrs152
resnetrs200
resnetrs270
resnetrs350
resnetrs420
resnetv2_50
resnetv2_50x1_bit_distilled
resnetv2_50x1_bitm
resnetv2_50x1_bitm_in21k
resnetv2_50x3_bitm
resnetv2_50x3_bitm_in21k
resnetv2_101
resnetv2_101x1_bitm
resnetv2_101x1_bitm_in21k
resnetv2_101x3_bitm
resnetv2_101x3_bitm_in21k
resnetv2_152x2_bit_teacher
resnetv2_152x2_bit_teacher_384
resnetv2_152x2_bitm
resnetv2_152x2_bitm_in21k
resnetv2_152x4_bitm
resnetv2_152x4_bitm_in21k
resnext26ts

创建模型

执行代码

self.model = timm.create_model('resnetv2_50', pretrained, num_classes=12, global_pool="avg")

加载预训练权重

timm模型加载预训练权重,均改为从huggingface自动下载。由于众所周知的原因,我们不能下载。我们可以选择加载其他版本的预训练权重。代码:

model_path = '/Users/admin/Downloads/pytorch_model.bin'  # 替换为你的pytorch_model.bin文件路径# 加载模型权重
state_dict = torch.load(model_path, map_location=torch.device('cpu'))# 创建模型实例并加载权重
model = timm.create_model("eva_giant_patch14_336.clip_ft_in1k", pretrained=False)
model.load_state_dict(state_dict)# 修改输出类别数
model.reset_classifier(num_classes)  

特征提取

使用timm库进行特征提取是一个常见的任务,尤其是在处理图像数据时。timm(Torch Image Models)是一个基于PyTorch的库,它包含了一系列预训练的深度学习模型,这些模型可以很方便地用于特征提取、迁移学习等任务。

以下是一个使用timm进行特征提取的基本示例:

首先,确保你已经安装了timm库:

pip install timm

然后,你可以使用以下Python代码进行特征提取:

import torch
from timm import create_model, list_models
from torchvision import transforms
from PIL import Image# 选择一个预训练模型
model_name = 'resnet50'
pretrained_model = create_model(model_name, pretrained=True)# 切换到评估模式,关闭dropout和batch normalization层
pretrained_model.eval()# 定义预处理变换
transform = transforms.Compose([transforms.Resize(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])# 加载图像
image_path = 'path_to_your_image.jpg'
image = Image.open(image_path).convert('RGB')# 应用预处理变换
image_tensor = transform(image).unsqueeze(0)  # 添加batch维度# 如果有GPU,将图像和数据模型转移到GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
image_tensor = image_tensor.to(device)
pretrained_model = pretrained_model.to(device)# 提取特征
with torch.no_grad():  # 不需要计算梯度,节省内存和计算资源features = pretrained_model.forward_features(image_tensor)  # 获取特征# 将特征转移到CPU(如果需要)并展平
features = features.cpu().numpy().flatten()print(features)

在这个例子中,我们首先创建了一个预训练的ResNet-50模型。然后,我们将模型设置为评估模式,并定义了一个预处理变换,该变换将图像缩放到256x256,中心裁剪到224x224,转换为张量,并应用归一化。

接下来,我们加载了一张图像,并应用预处理变换。然后,我们检查是否有可用的GPU,并将图像张量和模型转移到相应的设备上。

最后,我们使用forward_features方法(这是timm库特有的,用于直接获取模型的卷积层输出,而不包括全连接层)来提取图像的特征。提取的特征被转移到CPU上,并展平为一个一维数组。

注意:不同的模型可能有不同的方法来获取特征。例如,一些模型可能没有forward_features方法,而是需要你手动选择特定的层来获取特征。在这种情况下,你需要查阅该模型的文档或源代码来了解如何正确提取特征。

http://www.yidumall.com/news/41841.html

相关文章:

  • 河北省住房城乡建设厅网站鄞州seo整站优化服务
  • 把网站内的文本保存到txt怎么做深圳网络营销和推广渠道
  • 怎样给网站做百度推广营销公司网站
  • 为什么要做个人网站淘宝代运营
  • 衡水建个网站多少钱短视频关键词seo优化
  • 天津模板做网站网页设计论文
  • 商务网站开发课程建言网络公司网络推广
  • 视频网站app怎么做的网购网站十大排名
  • 沈阳做企业网站seo sem优化
  • 企业宣传片拍摄思路知乎seo
  • seo在线优化技术淘宝seo
  • wordpress自动图床seo内部优化方式包括
  • 商城网站模板源码黄冈网站推广软件免费下载
  • 网站怎么做效果好互联网营销师证书怎么考多少钱
  • 建立网站要怎么做seo沈阳
  • 企业网站规划书优化营商环境的意义
  • wordpress面页模板下做网站关键词优化的公司
  • 网站建设去哪百度推广登陆入口官网
  • 长春火车站疫情防控咨询电话号码自己怎么做网站
  • 设计高端网站建设百度官网电话
  • 网站开发功能需求文档百度搜索榜单
  • 网站建设岗位说明爱站网seo工具
  • 怎么看网站有没有做百度推广发布软文是什么意思
  • 北京做网站公司哪家强seo优化推广工程师招聘
  • wordpress the_post_thumbnailseo高效优化
  • 合肥建设工程信息网站alexa
  • 厦门做企业网站比较好的公司引流用什么话术更吸引人
  • 企业网站托管运营西安百度提升优化
  • 外包app公司不给源代码如何进行seo
  • 桂林创新大厦网站怎样在百度上免费做广告