当前位置: 首页 > news >正文

web开发基础形考答案seo网络排名优化技巧

web开发基础形考答案,seo网络排名优化技巧,域名购买后还要解析吗,腾讯网站站内面包屑导航思考与练习 练习2.1 语音信号在产生的过程中,以及被感知的过程中,分别要经过人体的哪些器官? 1.产生过程: 肺部空气 → \rightarrow →冲击声带 → \rightarrow →通过声道(可以调节) → \rightarrow →…

思考与练习

练习2.1

  • 语音信号在产生的过程中,以及被感知的过程中,分别要经过人体的哪些器官?

1.产生过程
肺部空气 → \rightarrow 冲击声带 → \rightarrow 通过声道(可以调节) → \rightarrow 发出不同声音
2.感知过程
空气传播 → \rightarrow 进入人耳 → \rightarrow 鼓膜震动 → \rightarrow 听小骨 → \rightarrow 耳蜗 → \rightarrow 电信号 → \rightarrow 中枢听觉系统

练习2.2

  • 汉语拼音的声调,对应的是语音信号的哪种特征?
    1.基频:一段信号有10Hz和100Hz叠加而成,那么基频就是10Hz,如图1所示。
    图1
图1 基频为10Hz的正弦波

2.基音轨迹: 信号以横轴为时间,纵轴为基频得到的曲线。汉语拼音四声如图2所示 1 ^1 1

在这里插入图片描述

图2 普通话声调的基音轨迹

练习2.3

  • 人耳听觉的非线性是由哪些因素造成的?
    人耳构造非线性
    1.外耳:耳翼、外耳道、鼓膜,外耳道看似一条管道,有许多共振频率,对某些频率的声音进行放大。
    2.中耳:通过三块听小骨传到内耳,在一定声强范围内,传递是线性的,超出一定范围,这种传递变成非线性的(保护内耳)
    3.内耳:耳蜗依靠毛细胞将机械振动(耳蜗中流体速度变化)转化电信号,耳蜗不同位置的毛细胞,对应不同频率声音,分布大致按频率对数分布。
    非线性体现在两方面:对频率感知的非线性,对声强感知的非线性。

图3

图3 耳的构造

练习2.4

  • 动圈式麦克风的工作原理是什么?与电容式麦克风相比,动圈式麦克风有哪些优缺点?
    动圈式麦克风
图4 动圈式麦克风

1.工作原理:当声波使膜片振动时,连接在膜片上的线圈随着一起振动,产生感应电流(电信号),通过信号放大器,并从扬声器发出声音。
2.优缺点:优点有不需要直流工作电压,缺点包括灵敏度低。

练习2.5

  • 编写一段程序,利用μ-law 变换的公式,将16 位线性脉冲编码格式存储的音频转换为8 位非线性脉冲编码格式,并比较转换前后音频的声音质量及文件大小。
sox input.wav -e mu-law -b 8 output.wav
sox input.wav -e mu-law output1.wav

output.wav和output1.wav一样大小,均为input.wav一半。上面两行代码一直,表示 μ − law \mu-\text{law} μlaw默认为8位
μ − law \mu-\text{law} μlaw公式为:
f ( x ) = sgn ( x ) ln ( 1 + μ ∣ x ∣ ) ln ( 1 + μ ) f(x) =\text{sgn}(x)\frac{\text{ln}(1+\mu|x|)}{\text{ln}(1+\mu)} f(x)=sgn(x)ln(1+μ)ln(1+μx)
在这里插入图片描述

图5

练习2.6

  • 窗函数的作用是什么?有哪些常见的窗函数?
    作用
    1.吉布斯现象(Gibbs phenomenon):在不连续点出产生高频分量,导致傅里叶变换后的频谱出现局部峰值。
    2.频谱泄露:周期信号在分帧过程中被截断,导致频谱在整个频带内发生拖尾现象。
    常见的窗函数
    1.汉宁窗
    α = 0.5 \alpha=0.5 α=0.5
    2.汉明窗
    α = 0.46 \alpha=0.46 α=0.46
    ω [ n ] = ( 1 − α ) − α c o s 2 π n N − 1 \omega[n]=(1-\alpha)-\alpha cos\frac{2\pi n}{N-1} ω[n]=(1α)αcosN12πn
    在这里插入图片描述
图6 汉明窗和汉宁窗

练习2.7

  • 编写一段程序,用以计算一段有限离散信号的离散傅里叶变换。
import scipy
import matplotlib.pyplot as plt
import numpy as np# 读取音频文件
rate, data = scipy.io.wavfile.read("resampled.wav")# 计算 STFT
f, t, Z = scipy.signal.stft(data, fs=rate, window='hann', nperseg=400, noverlap=240,nfft=None, detrend=False, return_onesided=True,boundary='zeros', padded=True, axis=-1
)# 绘制音频波形
plt.figure(figsize=(12, 6))
plt.subplot(2, 1, 1)
plt.plot(data)
plt.title('Audio Waveform')
plt.xlabel('Sample')
plt.ylabel('Amplitude')# 绘制频谱
plt.subplot(2, 1, 2)
plt.pcolormesh(t, f, 10 * np.log10(np.abs(Z)), shading='auto')
plt.title('Spectrogram')
plt.xlabel('Time (s)')
plt.ylabel('Frequency (Hz)')
plt.colorbar()
plt.tight_layout()
plt.show()

在这里插入图片描述

图7 声波图及频谱图

练习2.8

  • 感知线性预测与梅尔倒谱系数在设计与实现上有哪些相同点与不同点?
    1.相同点:频域转换使用SIFT,最终系数都采用IDFT
    2.不同点
  • 1 ^{1} 1PLP通过对功率谱进行巴克刻度变换,再与临界频带滤波器组卷积,结果通过等响度曲线预加重,而MFCC在第一步先进行预加重。
  • 2 ^{2} 2频率校正:PLP系数通过巴克刻度、临界频带
  • 3 ^{3} 3声强校正:PLP采用 y = x 1 3 y=x^\frac{1}{3} y=x31,MFCC采用 y = log x y=\text{log}x y=logx

练习2.9

  • 除了LibROSA,还有一些基于Python 语言的音频特征提取工具库。下载并熟悉pyAudioAnalysis 与python_speech_features 工具库,利用其从音频中提取特征并进行可视化。
  • pyAudioAnalysis教程
  • python_speech_features教程

参考文献

  1. 宋刚, 姚艳红. 用于汉语拼音单音节声调识别的基频轨迹拟合方法[J]. 计算机工程与应用, 2008, 44(29):239-240.
http://www.yidumall.com/news/41070.html

相关文章:

  • WordPress 建电商网站国外推广网站
  • dw做链接网站无法显示该页面太原网站制作推广
  • 怎样做党史网站营销网站设计
  • 网站制作留钱凡科建站登录入口
  • 网站侧边栏怎么做品牌推广外包
  • 长沙做网站比较好的公司推广软文营销案例
  • 网站开发培训程序员现在推广一般都用什么软件
  • 国外专业做汽配的网站如何进行搜索引擎优化?
  • 博客网站开发seo人员的职责
  • 免费网站建设 优帮云app软件推广平台
  • 直播网站开发框架网络推广平台代理
  • 深圳网站设计网站百度推广客户端mac版
  • 吉林响应式网站建设种子搜索神器
  • 06年可以做相册视频的网站网站怎么优化排名的方法
  • 东莞网站建设图表免费淘宝关键词工具
  • php的网站模板下载西安seo网站关键词
  • 做一个舌尖上的中国网站怎么做企业推广语
  • 给别人做网站怎么收取费用合肥网络推广网络运营
  • 做招聘网站都需要什么手续最近10个新闻
  • 建设网站具备的知识市场营销策划方案书
  • 帮人做诈骗网站获利35万退赃部分站长之家素材
  • 溧水做网站企业培训内容包括哪些内容
  • 动态网页设计培训学校seo可以从哪些方面优化
  • 外卖网站开发能多少钱青岛专业网站制作
  • 怎样建立自己的网站赚钱模板自助建站
  • 公司网站 正式上线html网页制作用什么软件
  • 山西太原发现1例阳性天津关键词优化专家
  • 单产品网站模板企业推广策划
  • 网站名字大全有哪些网络口碑营销案例分析
  • 不需要网站备案的空间互联网营销做什么