当前位置: 首页 > news >正文

网站首页导航代码全渠道营销

网站首页导航代码,全渠道营销,网站建设公司怎么赚钱,新媒体网站建设十大的经典成功案例什么是 LRU LRU (最近最少使用算法), 最早是在操作系统中接触到的, 它是一种内存数据淘汰策略, 常用于缓存系统的淘汰策略. LRU算法基于局部性原理, 即最近被访问的数据在未来被访问的概率更高, 因此应该保留最近被访问的数据. 最近最少使用的解释 LRU (最近最少使用算法), 中…

什么是 LRU

LRU (最近最少使用算法),

最早是在操作系统中接触到的, 它是一种内存数据淘汰策略, 常用于缓存系统的淘汰策略.

LRU算法基于局部性原理, 即最近被访问的数据在未来被访问的概率更高, 因此应该保留最近被访问的数据.

最近最少使用的解释

LRU (最近最少使用算法), 中的 "最近" 不是其绝对值的修饰, 而是一个范围.
如: 你最近去了那些地方, 最近看了哪些书.
而不是: 离你最近的人是谁, 离你最近的座位是哪一个. 

了解了最近的意义, 那么串联起来就是: 最近使用的一堆数据中, 哪一个数据使用的是最少的

LRU原理

下面展示了 LRU 算法的基本原理.

可以看到, 在 LRU 算法中, 涉及到了对象的移动, 如果使用 数组 来作为缓存, 那么移动对象的效率很慢. 因为在这个算法中, 经常涉及到头插元素, 数组 的头插是O(n^2), 非常的慢.

所以推荐使用 双向链表 来实现.

146. LRU 缓存 - 力扣(LeetCode)

但是在题目中, 要求查找和插入的时间复杂度为O(1);
双向链表的插入删除时间复杂度为O(1), 但是查找的时间复杂度为O(n).

双向链表 + 哈希表

单使用双向链表, 查找的时间复杂度为O(n), 那么数据结构的查找操作的时间复杂度为O(1)?
答案很明显: 哈希表

 定义链表节点 ListNode

struct ListNode
{
public:ListNode(){}ListNode(int k, int v):key(k),value(v){}~ListNode(){}int key;int value;// 节点中不仅存储 value, 还存储 key, 这在后面的 put 函数中有用ListNode* next;ListNode* prev;
};

LRUcache 成员属性

class LRUCache {
public:int _size = 0; // 记录缓存中已经缓存了多少数据int _capacity = 0; // 记录缓存大小 (可缓存的数据个数)ListNode* head = nullptr; // 双向链表的头节点ListNode* tail = nullptr; // 双向链表的尾节点unordered_map<int, ListNode*> table;// 底层是通过 hashtable 实现的map, 用来通过 kev 查找节点
}

LRUcache 成员方法

构造 / get / put 函数

class LRUCache {
public:LRUCache(int capacity) {_capacity = capacity; // 记录缓存的大小// 初始化链表的 头节点 和 尾节点head = new ListNode;tail = new ListNode;// 将头尾节点连接起来head->next = tail;head->prev = tail;tail->next = head;tail->prev = head;}// 通过 key 获取对应的 value. 如果 key 不存在, 则返回 -1int get(int key) {auto it = table.find(key); // 通过 hashtable 查找 key 是否存在if(it == table.end()){return -1; // 不存在对应的 [key, value], 返回 -1}// 存在 key, 记录value, 然后更新这个节点, 将这个节点移动到链表头部int ret = it->second->value;MoveToHead(it->second); // 将这个节点移动到头部return ret;}// 插入一对键值对 [key, value]void put(int key, int value) {auto it = table.find(key); // 在 hashtable 中查找是否已经存在 keyif(it != table.end()) // 已经存在 key 则更新节点的值, 并且将这个节点移动到链表头部{// 更新节点it->second->value = value;MoveToHead(it->second); // 将节点移动到链表头部return; // 直接返回, 下面是进行插入的操作}// key 不存在, 判断 空间是否已满, 满了就需要删除 链表末尾的节点if(_size == _capacity){// ListNode 中记录的 key 就起作用了, 如果只有 value, 那么就还需要遍历 tableint back = tail->prev->key;table.erase(back); // 删除 hashtable 中这个节点的记录pop_back(); // 删除尾部节点--_size;}// 链表末尾的节点已被删除, 现在需要向 链表头部 插入 新的节点ListNode* node = push_front(key, value);table[key] = node; // 在 hashtable 中记录这个新的节点++_size;}
};

MoveToHead / push_front / pop_back 函数

class LRUCache {
public:// 将 node 移动到链表头部void MoveToHead(ListNode* node){if(node == head->next) // 如果这个节点就是头部, 那么就不移动{return;}ListNode* node_next = node->next; // 记录 node 节点的后一个节点ListNode* node_prev = node->prev; // 记录 node 节点的前一个节点node_prev->next = node_next; // 将 node 的前后节点连接起来node_next->prev = node_prev;// 将 node 节点链接到链表首部node->prev = head; node->next = head->next;head->next->prev = node;head->next = node;}// 头插ListNode* push_front(int key, int value){ListNode* node = new ListNode(key, value);ListNode* next = head->next;head->next = node;node->prev = head;next->prev = node;node->next = next;return node;}// 尾删void pop_back(){ListNode* prev = tail->prev->prev;ListNode* cur = tail->prev;prev->next = tail;tail->prev = prev;delete cur;}
};

 

 

完整代码

class LRUCache {
public:struct ListNode{public:ListNode(){}ListNode(int k, int v):key(k),value(v){}~ListNode(){}int key;int value;ListNode* next;ListNode* prev;};int _size = 0;int _capacity = 0;ListNode* head = nullptr;ListNode* tail = nullptr;unordered_map<int, ListNode*> table;LRUCache(int capacity) {_capacity = capacity;head = new ListNode;tail = new ListNode;head->next = tail;head->prev = tail;tail->next = head;tail->prev = head;}int get(int key) {auto it = table.find(key);if(it == table.end()){return -1;}int ret = it->second->value;MoveToHead(it->second); // 将这个节点移动到头部return ret;}void put(int key, int value) {auto it = table.find(key);if(it != table.end()){// 更新节点it->second->value = value;MoveToHead(it->second);return;}if(_size == _capacity){int back = tail->prev->key;table.erase(back); // 删除 hashtable 中的键值对pop_back(); // 删除尾部节点--_size;}ListNode* node = push_front(key, value);table[key] = node;++_size;}void MoveToHead(ListNode* node){if(node == head->next){return;}ListNode* node_next = node->next;ListNode* node_prev = node->prev;node_prev->next = node_next;node_next->prev = node_prev;node->prev = head;node->next = head->next;head->next->prev = node;head->next = node;}ListNode* push_front(int key, int value){ListNode* node = new ListNode(key, value);ListNode* next = head->next;head->next = node;node->prev = head;next->prev = node;node->next = next;return node;}void pop_back(){ListNode* prev = tail->prev->prev;ListNode* cur = tail->prev;prev->next = tail;tail->prev = prev;delete cur;}};

http://www.yidumall.com/news/3996.html

相关文章:

  • 做推广任务的网站有哪些武汉seo网站优化排名
  • 鸡泽专业做网站贵阳百度推广电话
  • 无锡网站建设工作室广州网络优化最早的公司
  • 公司注册查询网西安seo服务外包
  • 永久免费的看书神器高明搜索seo
  • 国外企业网站设计欣赏营销工具
  • 什么网站可以找到手工活做seo页面内容优化
  • 微信网站链接怎么做长沙谷歌优化
  • ui设计的网站交换链接的作用
  • 网站建设合同内容seo网站制作优化
  • 域名备案掉了网站还可以用吗sem是什么岗位
  • 网站空间内存项目推广网站
  • 清迈城市建设网站河南靠谱seo地址
  • wordpress获取文章内图片整站优化加盟
  • 网站建设moban上海最新发布最新
  • 网站建设公司 未来怎么注册个人网站
  • 青岛网站设计皆挺青岛博采网络怎么优化
  • 猎头网站怎么做手机优化软件哪个好
  • 泰安网站建设xtempire企业如何注册自己的网站
  • 网站做任务赚qbseo自动排名软件
  • 柳州网站建设源码网络推广代理怎么做
  • wordpress 4.0 慢襄阳seo培训
  • 电商网站竞价推广策略地推app推广赚佣金
  • wordpress farmer郑州seo方案
  • 网站加在线qq百度pc端入口
  • wordpress文章保存图片天津seo招聘
  • 网站被劫持应该怎么做宁波seo网站
  • 建设网站需要的编程2022年新闻摘抄简短
  • 东莞网站建设(信科网络)怎么做免费的网站推广
  • 做外贸不能访问国外网站怎么办营销网站的宣传、推广与运作