当前位置: 首页 > news >正文

做网站要买什么空间新东方考研培训机构官网

做网站要买什么空间,新东方考研培训机构官网,作文网投稿,网站开发属于软件设计嘛一、路径类 1. 字母收集 思路: 1、预处理 对输入的字符矩阵我们按照要求将其转换为数字分数,由于只能往下和往右走,因此走到(i,j)的位置要就是从(i - 1, j)往下走&#…

一、路径类

1. 字母收集

思路:

1、预处理

     对输入的字符矩阵我们按照要求将其转换为数字分数由于只能往下和往右走,因此走到(i,j)的位置要就是从(i - 1, j)往下走,或者是从(i,j  - 1)的位置往右走,由于我们要使得路程遍历积分最多,则应该从积分多的位置过来,

2、状态表示 dp[i][j] 表示:从[0, 0]出发,到底[i, j]位置,一共有多少分

3、状态转移方程

    故(i,j)位置的积分应该为dp[ i ][ j ] = max(dp[ i - 1 ][ j ], dp[ i ][ j - 1 ]) + dp[ i ][ j ];

4、初始化

    但是上面仅对于(i >= 1 && j >= 1)成立,对于第一行和第一列我们应该特殊处理,利用前缀和的知识可以求得,走到第一列的第i个位置最多能拿的积分以及走到第一行的第j个位置最多能拿的积分,然后我们就可以按照dp[ i ][ j ] = max(dp[ i - 1 ][ j ], dp[ i ][ j - 1 ]) + dp[ i ][ j ]的方法遍历每个节点即可

#include <iostream>
using namespace std;const int N = 1005;
int dp[N][N];int main() {int n, m;cin >> n >> m;char ch;for (int i = 0; i < n; i++){for (int j = 0; j < m; j++){cin >> ch;if (ch == 'l') dp[i][j] = 4;else if (ch == 'o') dp[i][j] = 3;else if (ch == 'v') dp[i][j] = 2;else if (ch == 'e') dp[i][j] = 1;else a[i][j] = 0;}}for (int i = 1; i < n; i++) dp[i][0] = dp[i - 1][0] + dp[i][0]; 
for (int j = 1; j < m; j++) dp[0][j] = dp[0][j - 1] + dp[0][j]; for (int i = 1; i < n; i++){for (int j = 1; j < m; j++){dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + dp[i][j];}}cout << dp[n - 1][m - 1] << endl;return 0;
}

2、[NOIP2002 普及组] 过河卒

分析:

思路:
1、状态表示
dp[i][j] 表示:从[0, 0]出发,到底[i, j]位置,一共有多少种方法
2、状态转移方程

    dp[ i ][ j ] = dp[ i - 1 ][ j ] + dp[i][j - 1] (i > 0 && j > 0)

当走到马可以走的地方,dp[ i ][ j ] = 0;
3、初始化

先创建一个 dp[ n + 2 ][ m + 2 ],然后让dp[ 0 ][ 1 ] = 1 或者 dp[ 1 ][ 0 ] = 1。注意这样初始化的时候,x需要+1,y也需要+1.和dp表位置一一对应

#include <iostream>
#include <vector>
using namespace std;//int dp[1005][1005];
int main()
{int n, m, x, y;cin >> n >> m >> x >> y;vector<vector<long long>> dp(n + 2, vector<long long>(m + 2));dp[0][1] = 1;x += 1, y += 1;和dp表位置一一对应for (int i = 1; i <= n + 1; i++){for (int j = 1; j <= m + 1; j++) { //马所在位置if (i != x && j != y && abs(i - x) + abs(j - y) == 3 || (i == x && j == y)){dp[i][j] == 0;}else dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}cout << dp[n + 1][m + 1] << endl;return 0;
}

二、子序列和连续序列类

1. mari和shiny

🌈线性 dp

在维护 i 位置之前,⼀共有多少个 "s" "sh" ,然后更新 "shy" 的个数。

(1)状态表示

  • s[i]:字符串 str 中 [0, i] 区间内有多少个 "s"。

  • h[i]:字符串 str 中 [0, i] 区间内有多少个 "sh"。

  • y[i]:字符串 str 中 [0, i] 区间内有多少个 "shy。


(2)状态转移方程


(3)空间优化

用三个变量来表示即可

s:(字符串 str 中 [0, n-1] 区间内有多少个 "s")

h:(字符串 str 中 [0, n-1] 区间内有多少个 "sh")

y:(字符串 str 中 [0, n-1] 区间内有多少个 "shy")

最后的遍历结束后,y即我们需要的结果

#include <iostream>
#include <string>
using namespace std;
typedef long long ll;
int main()
{int n;string str;cin >> n >> str;ll s = 0, h = 0, y = 0;for (int i = 0; i < n; i++) {if (str[i] == 's') s++;else if (str[i] == 'h') h += s;else if (str[i] == 'y') y += h;}cout << y << endl;return 0;
}
🌈二维 dp 

这道题目如果不是子序列,而是要求连续序列的,那就可以考虑用 KMP。

(1)dp[i][j] 含义

  • string t="shy"

dp[i][j]:以 i-1 为结尾的 str 子序列中出现以 j-1 为结尾的 t 的个数为 dp[i][j]。


(2)递推关系

  • str[i - 1] 与 t[j - 1]相等
  • str[i - 1] 与 t[j - 1] 不相等

当 str[i - 1] 与 t[j - 1]相等时,dp[i][j] 可以有两部分组成:

  1. 一部分是用 str[i - 1] 来匹配,那么个数为 dp[i - 1][j - 1]。即不需要考虑当前 str 子串和 t 子串的最后一位字母,所以只需要 dp[i-1][j-1]。
  2. 一部分是不用 str[i - 1] 来匹配,个数为 dp[i - 1][j]。

为什么还要考虑不用 str[i - 1] 来匹配,都相同了指定要匹配?
🧩例如: str:shyy 和 t:shy ,str[3] 和 t[2] 是相同的,但是字符串 str 也可以不用 str[3] 来匹配,即用 str[0]str[1]str[2] 组成的 "shy"。当然也可以用 str[3] 来匹配,即:str[0]str[1]str[3] 组成的 "shy"。

所以,当 str[i - 1] 与 t[j - 1] 相等时,dp[ i ][ j ] = dp[ i - 1 ][ j - 1 ] + dp[ i - 1 ][ j ];

当 str[i - 1] 与 t[j - 1] 不相等时,dp[i][j] 只有一部分组成,不用 str[i - 1] 来匹配(就是模拟在 str 中删除这个元素),即:dp[i - 1][j],所以递推公式为:dp[ i ][ j ] = dp[ i - 1 ][ j ];

为什么只考虑 “不用 str[i - 1] 来匹配” 这种情况, 不考虑 “不用 t[j - 1] 来匹配” 的情况呢?
🧩这里要明确,我们求的是 str 中有多少个 t,而不是求 t 中有多少个 str,所以只考虑 str 中删除元素的情况,即不用 str[i - 1] 来匹配 的情况。


(3)状态转移方程

  • dp[i][j]显然要从dp[i-1][?]递推而来。立即思考dp[i-1][j], dp[i-1][j-1]分别与dp[i][j]的关系。因为少一个字符,自然而然从当前字符着手。考察si的第i个字符(表为s[i])和tj的第j个字符(表为t[j])的关系。

  • 若s[i] ≠ t[j]:那么s_i中的所有t_j子序列,必不包含s[i],即s_i-1和s_i中tj的数量是一样的,得到该情形的转移方程: dp[ i ][ j ] = dp[ i -1 ][ j ]

  • 若s[i] = t[j]:假设s_i中的所有t_j子序列中,包含s[i]的有a个,不包含的有b个。s_i中包含s[i]的子序列个数相当于s_i-1中t_j-1的个数,不包含s[i]的子序列个数与上一种情况一样,于是得到该情形的转移方程:

    a = dp[ i -1 ][ j -1 ] b = dp[ i-1 ][ j ] dp[ i ][ j ] = a + b = dp[i-1][j-1] + dp[i-1][j]

     


(4)遍历顺序

从上到下,从左到右。

#include <iostream>
#include <vector>using namespace std;int main()
{int n;cin >> n;string str;cin >> str;string t="shy";int m=t.size();vector<vector<long long>> dp(n+1, vector<long long>(m+1));for(int i=0; i<=n; i++) dp[i][0]=1;for(int i=1; i<=n; i++){for(int j=1; j<=m; j++){if(str[i-1]==t[j-1])dp[i][j]=dp[i-1][j-1]+dp[i-1][j];elsedp[i][j]=dp[i-1][j];}}cout << dp[n][m] << endl;return 0;
}

2. 不同的子序列

该题于上题不一样的是,上面给定了t的具体字符串,而这里没有给定,但是我们也需要用二维dp的方法来写。

(1)dp[i][j] 含义

s[ i ]的子序列中在t[ j ]出现的次数

s[ i ]表示s从下标 i 到末尾的子字符串。

t[ j ]表示t从下标 j 到末尾的子字符串。


(2)递推关系

  1. 分别令两个维度为0,推测边界。
  2. dp[0][j]表示s_0中t_j的个数。s_0是空字符串,只有当j=0时,才有dp[0][j] = 1,表示s子空串中有一个t子空串,否则dp[0][j] = 0,因为一个空串不可能包含一个非空串。
  3. dp[i][0]表示s_i中t0的个数。t_0是空字符串,显然任何串(包括空串)都含有一个空子串。因此dp[i][0] = 1。

  4. 注意到,dp[i][0] = 1实际上已经包含了dp[0][j] = 1的情形。


(3)初始化

  • dp[i][0] 表示:以 i-1 为结尾的 str 可以随便删除元素,出现空字符串的个数。所以,dp[i][0] 一定都是 1,因为也就是把以 i-1 为结尾的 str,删除所有元素,出现空字符串的个数就是 1。
  • dp[0][j] 表示:空字符串 str 可以随便删除元素,出现以 j-1 为结尾的字符串 t 的个数。所以,dp[0][j] 一定都是 0,因为 str 如论如何也变成不了 t。
  • dp[0][0] 表示:空字符串 str 可以删除 0 个元素,变成空字符串 t。所以,dp[0][0] = 1。

(4)遍历顺序

从上到下,从左到右。

​
int numDistinct(string s, string t) {int n = s.size(), m = t.size();if (n < m) return 0;vector<vector<unsigned int>> dp(n + 1, vector<unsigned int>(m + 1)); //注意是unsigned intfor (int i = 0; i <= n; i++) dp[i][0] = 1;for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {dp[i][j] = dp[i - 1][j] +(s[i - 1] == t[j - 1] ? dp[i - 1][j - 1] : 0);}}return dp[n][m];
}​

http://www.yidumall.com/news/37261.html

相关文章:

  • 网络营销方案设计题seo排名软件有用吗
  • 建免费的网站吗苏州seo关键词优化软件
  • 天津 公司网站建设百度账号管理
  • 开发手机网站用什么语言站长工具 seo查询
  • 网站服务器搭建XP制作链接的app的软件
  • 网站建设网页设计用什么软件百度seo有用吗
  • 宝鸡市住房和城乡建设部网站百度seo关键词优化电话
  • 郑州怎么做网站排名模板建网站价格
  • 江苏建设信息网官网百度seo指数查询
  • 网站开发需要团队吗seo chinaz
  • 郑州高端网站案例搜索引擎网络推广方法
  • 中兴通讯的网站建设分析站长统计app软件下载官网
  • 我国政府网站建设和管理现状淘数据
  • 房地产建设网站的意义百度一级代理商
  • 宁波企业网站制作要多少钱女教师遭网课入侵直播录屏曝光se
  • 网站如何做的有特色兰州压热搜
  • 做国外网站销售公司网站如何seo
  • 长春网站排名怎么优化快
  • 网站建设十佳营销软文
  • 做音乐头像网站网络营销做得比较成功的企业
  • 建网站卖虚拟资源需要怎么做查看网站流量的工具
  • 公司变更流程青岛网站seo
  • 美国做科普的网站百度今日数据
  • 大连微信网站免费注册网页网址
  • 美容公司网站什么做才好百度网盘官网登陆入口
  • 聊城有制作网站的吗电影站的seo
  • 百度提交网站入口网址旅游景点推广软文
  • 杭州网站建设第一品牌微信朋友圈推广文案
  • 网站简繁体转换 js培训计划方案模板
  • 网站标题分隔符网站如何被百度快速收录