当前位置: 首页 > news >正文

个人站点的制作如何实施网站推广

个人站点的制作,如何实施网站推广,河南网站建设多少钱,做网站退款怎么做会计分录文章目录 微调总结 微调代码实现 微调 总结 微调通过使用在大数据上的恶道的预训练好的模型来初始化模型权重来完成提升精度。预训练模型质量很重要微调通常速度更快、精确度更高 微调代码实现 导入相关库 %matplotlib inline import os import torch import torchvision f…

文章目录

    • 微调
      • 总结
    • 微调代码实现

微调

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结

  • 微调通过使用在大数据上的恶道的预训练好的模型来初始化模型权重来完成提升精度。
  • 预训练模型质量很重要
  • 微调通常速度更快、精确度更高

微调代码实现

  1. 导入相关库
%matplotlib inline
import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
import matplotlib as plt
  1. 获取数据集
d2l.DATA_HUB['hotdog'] = (d2l.DATA_URL + 'hotdog.zip','fba480ffa8aa7e0febbb511d181409f899b9baa5')data_dir = d2l.download_extract('hotdog')
train_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir,'train'))
test_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir,'test'))
print(train_imgs)
print(train_imgs[0])
train_imgs[0][0]

在这里插入图片描述
查看数据集中图像的形状

hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs= [train_imgs[-i-1][0] for i in range(8)]
d2l.show_images(hotdogs + not_hotdogs, 2 ,8, scale=1.4)

在这里插入图片描述

  1. 数据增强
# 图像增广
normalize = torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224,0.225]
)
train_augs = torchvision.transforms.Compose(  # 训练集数据增强[torchvision.transforms.RandomResizedCrop(224),torchvision.transforms.RandomHorizontalFlip(),torchvision.transforms.ToTensor(),normalize]
)
test_augs = torchvision.transforms.Compose(  # 验证集不做数据增强[torchvision.transforms.Resize(256),torchvision.transforms.CenterCrop(224),torchvision.transforms.ToTensor(),normalize]
)
  1. 定义和初始化模型
# 下载resnet18,
# 老:pretrain=True: 也下载预训练的模型参数
# 新:weights=torchvision.models.ResNet18_Weights.IMAGENET1K_V1
pretrained_net = torchvision.models.resnet18(weights=torchvision.models.ResNet18_Weights.IMAGENET1K_V1)
print(pretrained_net.fc)

在这里插入图片描述

  1. 微调模型
  • (1)直接修改网络层(如最后全连接层:512—>1000,改成512—>2)
  • (2)在增加一层分类层(如:512—>1000, 改成512—>1000, 1000—>2)

本次选择(1):将resnet18最后全连接层的输出,改成自己训练集的类别,并初始化最后全连接层的权重参数

finetune_net = pretrained_net
finetune_net.fc = nn.Linear(finetune_net.fc.in_features, 2)
nn.init.xavier_uniform_(finetune_net.fc.weight)

在这里插入图片描述

print(finetune_net)

在这里插入图片描述

  1. 训练模型
  • 特征提取层(预训练层):使用较小的学习率
  • 输出全连接层(微调层):使用较大的学习率
def train_fine_tuning(net, learning_rate, batch_size=128, num_epochs=10, param_group=True):train_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(os.path.join(data_dir,'train'), transform=train_augs),batch_size=batch_size,shuffle=True)test_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(os.path.join(data_dir, 'test'), transform=test_augs),batch_size=batch_size)device = d2l.try_all_gpus()loss = nn.CrossEntropyLoss(reduction='none')if param_group:params_1x = [param for name, param in net.named_parameters()if name not in ['fc.weight', 'fc.bias']]trainer = torch.optim.SGD([{'params': params_1x}, {'params': net.fc.parameters(), 'lr': learning_rate * 10}],lr=learning_rate, weight_decay=0.001)else:trainer = torch.optim.SGD(net.parameters(),lr=learning_rate,weight_decay=0.001)d2l.train_ch13(net, train_iter, test_iter, loss,trainer, num_epochs, device)

训练模型

import time# 在开头设置开始时间
start = time.perf_counter()  # start = time.clock() python3.8之前可以train_fine_tuning(finetune_net, 5e-5, 128, 10)# 在程序运行结束的位置添加结束时间
end = time.perf_counter()  # end = time.clock()  python3.8之前可以# 再将其进行打印,即可显示出程序完成的运行耗时
print(f'运行耗时{(end-start):.4f} s')

在这里插入图片描述

直接训练:整个模型都使用相同的学习率,重新训练

scracth_net = torchvision.models.resnet18()
scracth_net.fc = nn.Linear(scracth_net.fc.in_features, 2)import time# 在开头设置开始时间
start = time.perf_counter()  # start = time.clock() python3.8之前可以train_fine_tuning(scracth_net, 5e-4, param_group=False)# 在程序运行结束的位置添加结束时间
end = time.perf_counter()  # end = time.clock()  python3.8之前可以# 再将其进行打印,即可显示出程序完成的运行耗时
print(f'运行耗时{(end-start):.4f} s')

在这里插入图片描述

http://www.yidumall.com/news/35796.html

相关文章:

  • 自己做网站需要什么软文代写发布网络
  • 外贸营销网页设计seo分析报告
  • 竹溪县县建设局网站青岛网站制作
  • 网络营销网站建设实训百度搜索一下
  • 搭建网站 在线浏览功能关键词优化多少钱
  • 国外做任务的网站推广软件免费
  • 自己建个电影网站可以吗南宁seo外包服务
  • 东莞疫情封路最新情况杭州网站优化企业
  • 58同城网站建设推广排名软件开发网站
  • 软文网站备案如何查询收录优美图片
  • 网站建设水上乐园桔子seo工具
  • 可信网站认证 费用如何网络营销
  • 深圳网站设计公司电下载百度安装到桌面
  • 设置网站首页搜狗网址
  • 做贷款在那些网站找客户seo实战技巧100例
  • 提供服务的网站优化设计六年级上册数学答案
  • 外贸建网站哪家好自动点击器软件
  • 河南实力网站建设首选aso平台
  • 网站首图怎么做企业软文营销发布平台
  • 苏州网站建设设计公司百度指数官网登录
  • title 网站建设公司实力网站ui设计
  • 定制网站开发流程图发稿平台
  • 把wordpress图标去掉上海搜索排名优化
  • 小白怎么做网站搬家教程南昌seo方案
  • 仅仅建设银行网站打不开免费做网站的网站
  • 中山响应式网站建设谷歌seo培训
  • 制作介绍的网站模板免费下载广告联盟怎么做
  • 泰州网站建设物美价廉排名seo公司哪家好
  • 用超轻粘土做网站网络营销推广处点
  • 怎么建立自己网站注册域名后怎么建网站